REINFORCED CONCRETE STRUCTURAL DESIGN.

PROJECT TITLE:

PROPOSED OF CONSTRUCTIONOF WORKSHOP ON BEHALF OF ENERGICOTEL Ltd

RUBAVU DISTICT NYUNDO Sector,

OWNER ENERGICOTEL LTD

DESIGN CODE: BS8110-1997

ROBOT STRUCTURE ANALYSIS PRO.

STRUCTURE DESIGN BUREAU: .CEGRAPHITEC LTD

Contact: Tel: (+250) 788793308

STRUCTURAL DESIGN ENGINEER:

Eng. HABIMANA AUGUSTIN BSc. Civil Eng.

November, 2018

I. GENERAL INTRODUCTION

I.1. INTRODUCTION

The aim of design is the achievement of an acceptable probability that structures being designed will perform satisfactorily during their intended life. With an appropriate degree of safety, they should sustain all the loads and deformations of normal construction and use and have adequate durability and resistance to the effects of misuse and fire.

Once the building form and structural arrangement have been finalized the design problem consists of the following:

- 1. Idealization of the structure into load bearing frames and elements for analysis and design
- 2. Estimation of loads
- 3. Analysis to determine the maximum moments, thrusts and shears for design

4. Design of sections and reinforcement arrangements for slabs, beams, columns, stairs and footings

5. Production of arrangement and detail drawings and bar schedules

This structural design process has been carried out under use of BS 8110 and EUROCODE

design code of practice.

Especially, computations have been made by use of BS 8110 based spreadsheets and Autodesk Robot Structural Analysis Software.

DESIGN INFORMATION

ТҮРЕ	DESCRIPTION
BS 8110 :The structural use of Concrete 1997(British Standard)	Relevant Building
	Regulations and Design Code
Classes building :Residential building)	Intended use of the building
Roof –Imposed :1.5 kN/m2	General loading conditions
-Finishes : 1kN/m2	
Floor –Imposed (3) and partitions(1)3 kN/m2	
Stairs –Imposed : 4 kN/m2	
- Finishes : 1 kN/m2	
Severe (external) and Mild (internal)	Exposure conditions
Reinforced Concrete footing to columns	Foundation type
Concrete: grade C 30 (fck=30MPa) (with 20mm Max. aggregates.	Material Data
Mix ratio : 350 kg/ m3	
Reinforcement :-Characteristic strength $f_v = 460 \text{ N/mm2}$	
for stirrups $f_y = 250 \text{ N/mm2}$	
Steel Characteristic 275	
Self weight of Reinforced concrete = 24kN/ m3	Other relevant information
Self weight of masonry wall = 18kN/ m3	
For Dead load : 1.4	Partial safety factor
For Live load : 1.6	
Country proved	
Sandy-gravel	Subsoil conditions
Allowable bearing pressure =250kN/ m2	

I.4. SCOPE

1.1 The numerical values of actions on buildings and civil Engineering works to be taken into account in the design are applicable to the various types of construction.

1.2 The purpose of the building: This building will be used as a residential house.

1.3 The materials used are Reinforced Concrete structures of framed type, Solid two way slabs and bricks for walling, and of RC wall for Shear wall elevation, whereas the roof is made up with metal sheets and truss in steel structure.

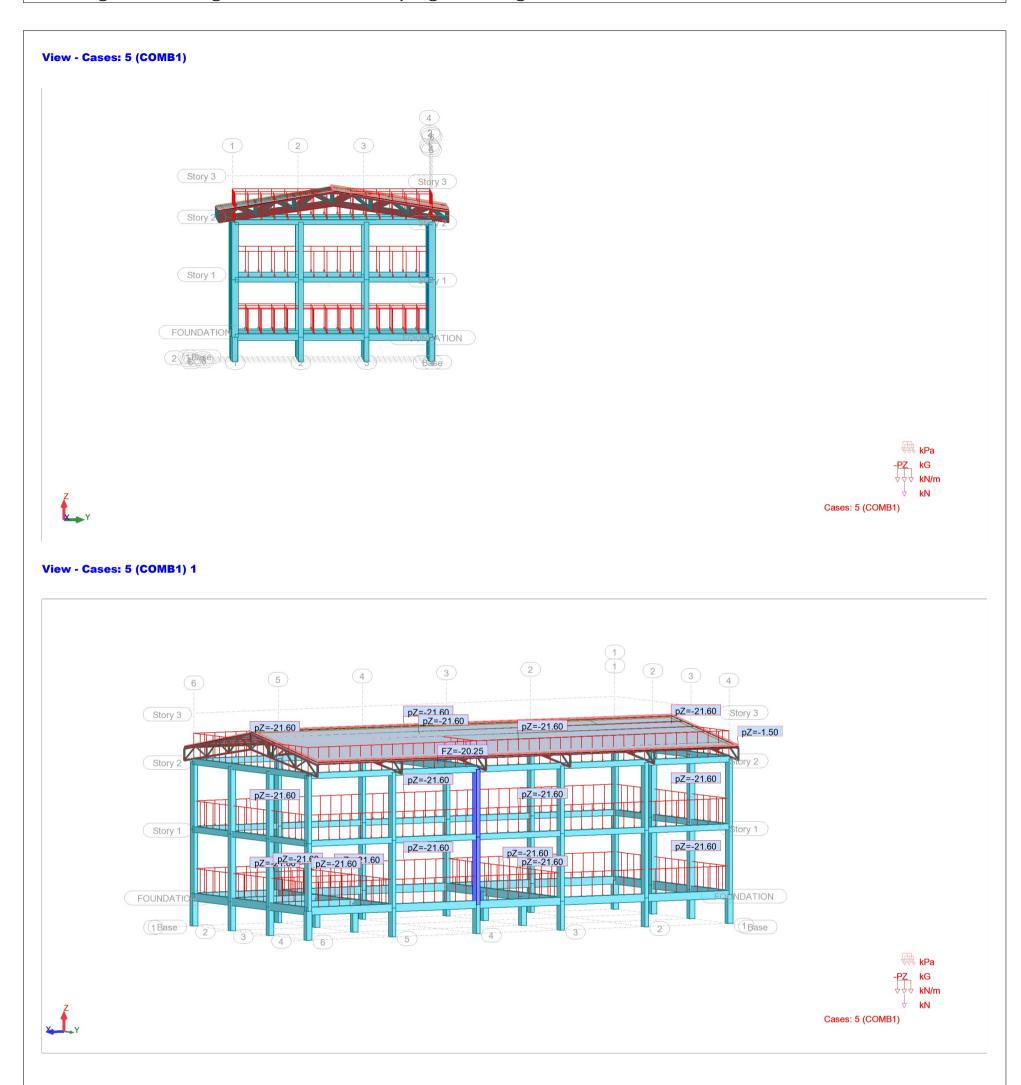
1.4 The execution of construction of this building is covered by various code of designs to the extent that it is necessary to indicate the quality of construction materials and products which should be used and the standard of workmanship on site needed to be supervised by qualified and experienced Engineer .Some lab test like compressive strength test for concrete should be done as seen as the building structure is important.

1.5 The method of design is Limit state design method accordingly to BS8110-1997; the structural use of Concrete 1992, and the use of Autodesk Robot Structural Analysis Professional software.

I.5. LOAD COMBINATIONS

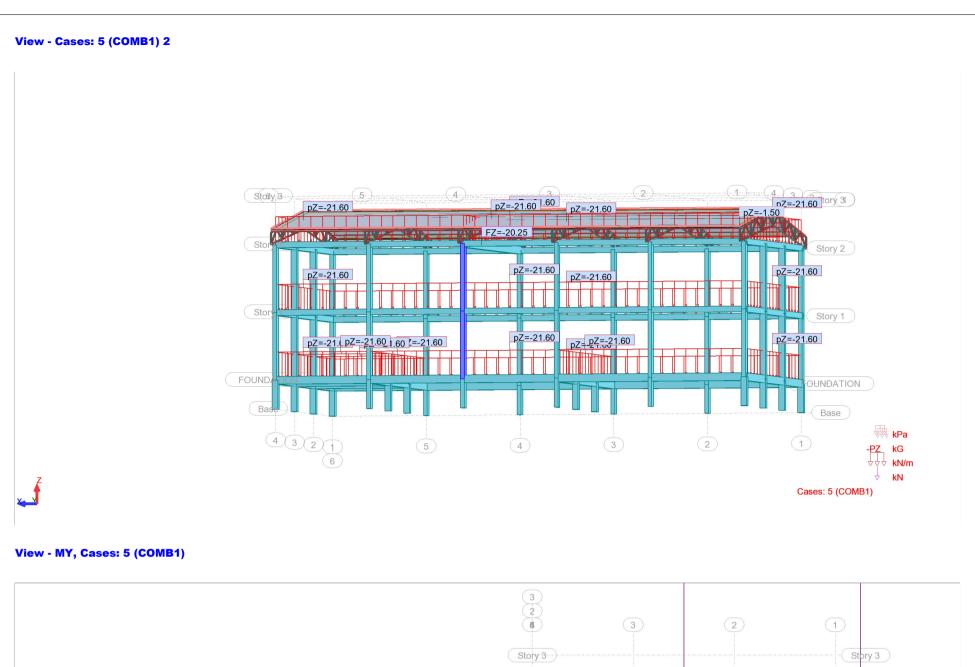
I.5.1.The Ultimate State (ULS)

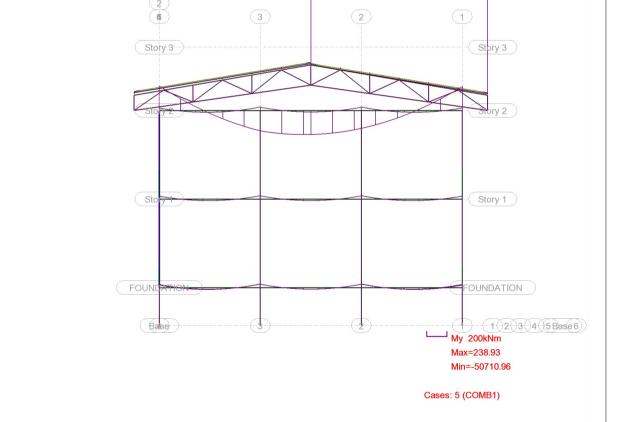
Various combinations of the characteristic values of dead load Gk, imposed load Qk, wind load Wk and their partial factors of safety must be considered for the loading of the structure.


The partial factors of safety specified by BS 8110 for ultimate limit state in loading combinations to be considered are as follows;

- (1) Dead and imposed load: 1.4Gk+1.6Qk
- (2) Dead and wind load: 1.0Gk+1.6Qk
- (3) Dead imposed and wind load: 1.2Gk+1.2Qk+1.2Wk

I.5.2.The Serviceability Limit State


A partial factor of safety of $\gamma f=1.0$ is usually applied to all load combinations with the serviceability limit state.


File: @STRUCTURE CALCULATION NOTE@ Project: @WORKSHOP @

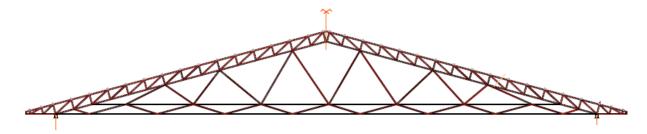
Date : 26/11/18

Autodesk Robot Structural Analysis Professional 2016	
Author: @CEGRAPHITECH LTD@	File: @STRUCTURE CALCULATION NOTE@
Address: @PROMISE HOUSE@	Project: @WORKSHOP @

Date : 26/11/18

DESIGN CODES: BS 6399- 1: 1996, BS5950-1: 2000.

1. General introduction


The design consists of designing a roof truss of a building with a span of 12m, spaced at 5m C/C. The purlins are spaced at 1.00. The building has a rectangular shape 12x 25 m. The Design is based to BS 5950-1-2000.

2. Design of trusses

2.1 Architectural design

Depth to span ratio should be ranged from 1:14 to 1:10; means height of apex from centre of span/span should be in range of 1/14 to 1/10 of span.

The roof will be roofed with iron sheet and with a slope of 15°.

2.2 Structural design

2.2.1 Loads calculation

2.2.1.1. Dead loads (B S 648)

a) Dead load-measured on the slope length

-Sheeting and insulation board = 0.25 kN/m²,
-Purlins = 0.1 kN/m²,
-Truss = 0.1 kN/m²,
-Ceiling and services =0.3kN/m²
-Total dead load = 0.75 kN/m².

2.2.1.2. Live load (B S 6399-3:1988)

(a) Imposed load measured on plan, clause 4.3.1 = 0.6 kN/m², Imposed load measured on slope = $0.6 \times 17.242 / 16.5 = 6.3 \text{ kN/m}^2$.

The design of roof truss will be done by using SHS members and welded joints. The truss is to be fabricated in two parts for transport to site.

2.2.1.3. Wind load (CP 3: Chapter V-2: 1972)

Clause 5.1:

The design wind speed V_s should be calculated from

 $V_{\rm s} = V * S_1 * S_2 * S_3$

Where *V* is the basic wind speed (see clause 5.2), and S_1 , S_2 , S_3 are design wind speed factors (clause 5.3 to 5.6 inclusive).

2.2.1.3.1 Design wind speed V_s Calculation

(A) Basic wind speed

V=20m/s

(B) Topography factor S₁

 S_1 =1.36; clause 5.4 and appendix D

(C) Factor S₂

S2=0.99; Clause 5.5 and table 3

$(D) Factor \ S_3$

S₃=1; Clause 5.6

Then

 $V_s = 20*1.36*0.99*1 = 27m/s$

2.2.1.3.2Dynamic pressure of the wind (q) calculation

 $q = k * V_s^2$

Values of *k* are as follows for the various units used in your calculation:

k = 0.613 in SI units (N/m² and m/s) k = 0.062 5 in metric technical units (kgf/m² and m/s) k = 0.002 56 in imperial units (lbf/ft² and mile/h). $q=0.613*27^{2}*10^{-3}\text{kN/m²}$ = 0.45kN/m²

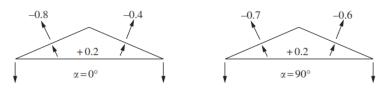
2.2.1.3.3 Pressure p exerted at any point of the surface of building

 $p=(C_{Pe}-C_{Pi})*q$ clause 4.3 4)

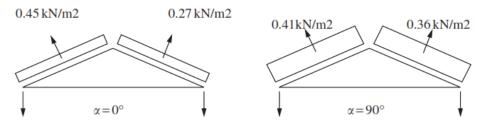
Cpe -pressure coefficients for external surface

Cpi.- pressure coefficients for internal surface

If the value of p is negative this indicates that p is a suction as distinct from a positive pressure.


(A) Pressure coefficients, Clause 7

• Internal pressure coefficient -C_{pi}


 C_{pi} is taken as the more onerous of the values +0.2 or -0.3. Those values are used where there is only a negligible probability of a dominant opening occurring during a severe storm. Otherwise please consult appendix E of CP3.

• External pressure coefficient -C_{pe}

The external pressure coefficients are shown in Figure below but are calculated from table 8 of CP3.

(B) Pressure calculation

Roof wind loads

The maximum one which is 0.45kN/m² will be used in design.

2.2.2 Roof elements design

2.2.2.1 Loads

• Unfactored load considered are (as calculated above)

Wind load (WL) = 0.45kN/m²

Live load (LL) = 0.63kN/m²

Dead load (DL) = 0.75 kN/m^2 .

Note: all of them are at slope length

• Load combination

The load combinations are (as per BS 5950-1:2000, clause 2.4.1.2):

```
COMB1= 1.4DL+1.6LL
COMB2= 1.0DL-1.4WL; if WL is adverse
COMB2=1.4(DL+WL); if WL is beneficial
COMB3= 1.2(DL+LL+WL)
```

- Properties and specification of materials
- Steel grade S275
- Elastic properties of steel (Clause 3.1.3of BS 5950-1:2000):
 - 1. Modulus of Elasticity $E = 205 \times 10^3 \text{ N/mm2}$
 - 2. Poisson's Ratio v = 0.3
 - 3. Shear Modulus $G = E/[2(1+v)] = (78.85 \times 103 \text{ N/mm}^2)$
 - 4. Coefficient of Thermal Expansion $\alpha = 12 \times 10^{-6} / {}^{\circ}C$

2.2.2.2 Purlins analysis and design

2.2.2.2.1 Analysis

Span: 2.5m, continuous Spacing: 1.15m

• Loads:

Wind load (WL) = 0.45*1.15=0.52kN/m

Live load (LL) = 0.63*1.15=0.73kN/m

Dead load (DL) = 0.75*1.15=0.87 kN/m

• Bending moment diagram and shear force

COMB1:

Summary:

Combination	Maximum value of	
	Moment	Shear force
COMB1	1.52	3.59
COMB2	0.09	0.21
COMB3	1.63	3.83

The design loads are from COMB3.

2.2.2.2.2 Design of section

I. Selection of section

Assume the section is class 1 and $p_{y} \, \text{is} \, 275 \text{N/mm}^2$

$$S = \frac{M}{P_{y}} = \frac{1.63 \times 10^{6} Nmm}{275 N/mm^{2}}$$
$$S = 5.93 cm^{3}$$

Select a cold formed RHS 50X50X2 with the following properties:

t=2mm

A=3.74 cm²

d/t=20

Second moment of area; I=14.1cm²

Radius of gyration; r=1.95cm

Elastic modulus, Z=5.66cm³

Plastic modulus; S=6.66cm³

II. Section classification

References	Calculations	Output
Table 9	t<16; Then $p_y=275$ N/mm ²	
	$\varepsilon = \left(\frac{275}{p_y}\right)^{\frac{1}{2}} = 1$	
Table 12	Flange: $\frac{d}{t} = 20$; $\varepsilon = 1$ and $72\varepsilon - \frac{d}{t} = 72 - 20 = 52$	
	As $\frac{d}{t} \le 26\varepsilon$ but $\le 72\varepsilon - \frac{d}{t}$ flange is class one.	
Table 12	Web: $\frac{d}{t} = 20$; $\varepsilon = 1$ and $56 \varepsilon = 56$	
	As $d/t \le 56\varepsilon$; web is class1.	
		The section is class 1

III. Section design

(A) Design for shear force

References	Calculations	Output

	F _v =3.83kN	
clause 4.2.3	$P_{v} = 0.6 * P_{y} * A_{v}$	
	$A_V = AD/(D+B)$	
	Where	
	A-is the area of section	
	D -is the overall depth	
	B -is the overall breadth	
	$A_V = 3.74 * 100 * 40/40 + 40 = 187 \text{mm}^2$	
	$P_V = 0.6 * 275 \frac{N}{mm^2} * 187 mm^2 = 30855N$	
	=31kN	
	$\mathbf{P}_{\mathbf{V}} > \mathbf{F}_{\mathbf{V}}$	The section is adequate in
		shear force.
Clause 4.2.3.	$\frac{d}{t} \le 70\varepsilon$ therefore no need to check shear buckling	

(B) Design for bending moment

Calculations	Output
F _v =0kN	
$0.6P_v = 18.6kN > F_v$	low shear
$M_c \leq 1.5^* P_y^* Z_x$	
$1.5*P_y*Z_x=1.5*275*5.66*10^{-3}=2.335$ kNm	
M _c =P _y *S _{xx}	
=275*6.66*10 ⁻³ =1.8315kNm	
Maximum applied moment M _x =1.63kNm < M _c	The section is adequate in
	bending moment
	$F_{v}=0kN$ $0.6P_{v}=18.6kN > F_{v}$ $M_{c} \le 1.5*P_{y}*Z_{x}$ $1.5*P_{y}*Z_{x}=1.5*275*5.66*10^{-3}=2.335kNm$ $M_{c}=P_{y}*S_{xx}$ $=275*6.66*10^{-3}=1.8315kNm$

(C) Serviceability check

Allowable deflection= L/200= 1150/200=5.75mm (table 8)

The deflection of the purlins in the outer span is Δ =2.048 mm < 5.75mm \rightarrow OK **Conclusion:** Purlins are cold formed RHS of 60x50x3 S275

2.2.2.3 Roof truss design

2.2.2.3.1 Analysis

Span: 33m centre to centre of bearings. Spacing: 2.5m

External wind pressure normal to the roof is: 0.45kN/m^2

Vertical component: 0.45cos15⁰=0.44kN/m²

• Load/Node:

Wind load (WL) = 0.44*1.15*2.5=1.3kN

Live load (LL) = 0.63*1.15*2.5=1.82kN

Dead load (DL) = 0.75*1.15*2.5=2.2 kN

• Load arrangement

• Analysis results (factored loads)

	Top chord		Bottom chord		diagonals	
	Force	Length (mm)	Force	Length (mm)	Force	Length (mm)
Max. Tension (kN)	93.49	4125	182.4	4125	39.61	3998
Max. Compression(kN)	183.4	1150	164.6	947	42.34	3283

2.2.3.2 Section design

I. Selection of section

Let's take a **RHS 80x40x3S355** with the following properties:

t=2.5mm

 $A_g = 6.59 \text{cm}^2$

d/t=23

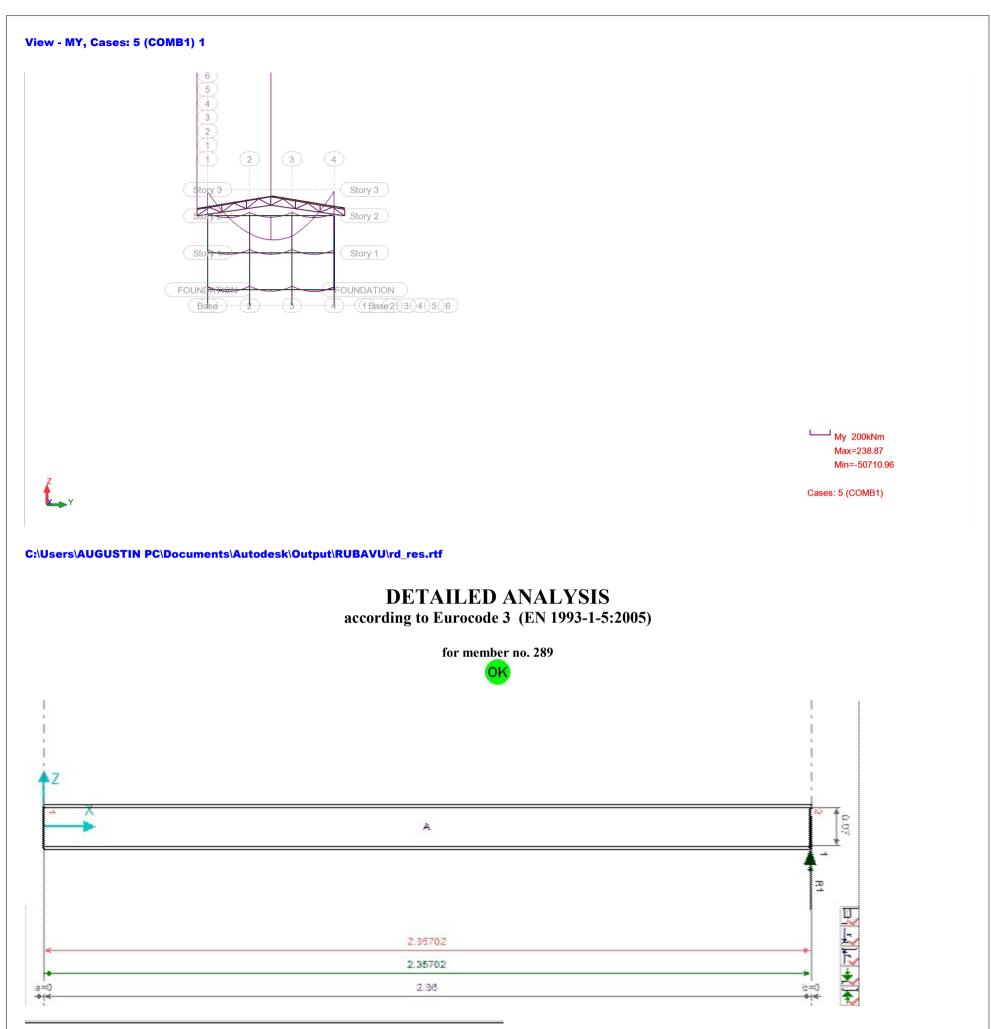
Second moment of area; I=49.4cm⁴

Radius of gyration; r=2.74cm

Elastic modulus, Z=14.1cm³

Plastic modulus; S=16.5cm³

II. Section classification


References	Calculations	Output
Table 9	t<16; Then $p_y=355$ N/mm ²	
	$\varepsilon = \left(\frac{275}{p_y}\right)^{\frac{1}{2}} = 0.88$	
Table 12	Flange: $\frac{b}{t} = 23$; $\varepsilon = 0.88$ and $35\varepsilon = 30.8$	
	As $\frac{d}{t} \le 35\varepsilon$ flange is not class 4.	
Table 12	4 Web: $d/_t = 23$; $\varepsilon = 0.88$	
	$\frac{105\varepsilon}{1+2r_2} \ge 35\varepsilon; r_2 = \frac{F_c}{A_g * P_{yw}} = \frac{183.4 * 1000N}{781mm^2 * 355 N/mm^2} = 0.66$	
	$\frac{105\varepsilon}{1+2r_2} = \frac{105*0.88}{1+(2*0.66)} = 39.83$	
	\geq 35 ε	
	As d/t<39.8; Web is not class4.	The section is not class 4

III. Section design

(D) Design for compression force

References	Calculations	Output
1 474	F _c =183.4kN	
clause 4.7.4	$P_c = A_g * P_c$	
Table 23	strut curve c)	
	$\lambda_y = \frac{l_y}{r_y} = \frac{1150mm}{27.4mm} = 42$	
Table 24-c)	$p_c = 296 \frac{N}{mm^2}$ then	
	$P_c = 296 * 659 * 10^{-3} kN = 195 kN$	
	P _C >F _C	
		The section is adequate in
		compression.

Conclusion: Trusses are cold formed SHS of 80x40x3S355

SECTION PARAMETERS: RHSC 80x40x3

ht=80 mm bf=40 mm tw=3 mm tf=3 mm

Ay=220 mm2 Iy=523000 mm4 Wely=13075 mm3

Az=441 mm2 Iz=176000 mm4 Welz=8800 mm3

Ax=661 mm2 Ix=439000 mm4

TRANSVERSE	STIFFENERS
INANSVENSE	STIFFENENS

Stiffener pos	real coordinates		
Translation:	a = 0.00 m; b = 0.	00 m	
Stiffener 1	bilateral	ts = 3 mm	hs = 74 mm
Stiffener 2	bilateral	ts = 3 mm	hs = 74 mm

CONCENTRATED FORCES

Force positions:	2.36;		real coordinates
Force 1	F1 = 0.00 kN	ss1 = 0 mm	

SHEAR BUCKLING RESISTANCE (EC3 art. 5)

Symbols:

Lam_w	- relative web slenderness	[5.2.(5)]
kT	- local buckling coefficient for shear	[A.3.(1)]
Xw	- Influence factor for shear resistance (web)	[5.3.(1)]

File: @STRUCTURE CALCULATION NOTE@ Project: @WORKSHOP @

Xf	- Influence factor for shear resistance (flange)	[5.4.(1)]
Xv	- Instability factor for shear	[5.2.(1)]
Mf,Rd	- Design resistance of section flanges	[5.4.(1)]
VEd	- Maximum shear force in a panel	[5.2.(1)]
Vb,Rd	- Design shear buckling resistance	[5.2.(1)]
Panel A	Panel coordinates A	x = (0.00; 1.00)
Point x = According	• 0.00 m to paragraph 5.1.(2), it is not necessary to check resistance to loca	l shear buckling.
RESIST	ANCE OF WEBS TO TRANSVERSE FORCES (E	C3 art.5.7)
	check has not been performed because the concentrated force app	
	ACTION SHEAR/BENDING/AXIAL FORCE (EC3	art. 7.1)
Symbols:		
My,Ed Mz,Ed	- Design bending moment - Design bending moment	
Mz,Ea NEd	- Design benaing moment - Design axial force	
VEd	- Design astar force	
v Lu Mf.Rd	- Design shear force - Design plastic moment resistance of a section consisting of flar	nges[7, 1, (1)]
My,pl.Rd	- Design plastic moment resistance of a section consisting of flan - Design beam resistance at bending	[7.1.(1)]
Vb.Rd	- Design shear buckling resistance	[5.2.(1)]
$v n \kappa a$		
v D.Ka	- Design shear bucking resistance	[5.2.(1)]
Panel A	Panel coordinates A	x = (0.00; 1.00)
<mark>Panel A</mark> Point x =	Panel coordinates A = 0.00 m	$\mathbf{x} = (0.00 ; 1.00)$
<mark>Panel A</mark> Point x =	Panel coordinates A	$\mathbf{x} = (0.00 ; 1.00)$
<mark>Panel A</mark> Point x =	Panel coordinates A = 0.00 m	$\mathbf{x} = (0.00 ; 1.00)$
Panel A Point x = According	Panel coordinates A = 0.00 m	$\mathbf{x} = (0.00 ; 1.00)$
Panel A Point x = According TRANS'	Panel coordinates A = 0.00 m to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9)	$\mathbf{x} = (0.00 ; 1.00)$
Panel A Point x = According	Panel coordinates A = 0.00 m to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9)	x = (0.00; 1.00)
Panel A Point x = According TRANS' Symbols: bw	Panel coordinates A = 0.00 m to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9)	x = (0.00 ; 1.00) b,Rd < 0.5);
Panel A Point x = According TRANS' Symbols: bw Ast	Panel coordinates A = 0.00 m to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9) - Effective web width	x = (0.00 ; 1.00) b,Rd < 0.5); [9.1.(2)]
Panel A Point x = According TRANS' Symbols: bw Ast Ist	Panel coordinates A 0.00 m to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9) - Effective web width - Stiffener area - Moment of inertia of stiffener - Critical Euler stress (column model)	x = (0.00 ; 1.00) b,Rd < 0.5); [9.1.(2)] [9.1.(2)]
Panel A Point x = According TRANS' Symbols: bw Ast Ist Sig,cr,c	Panel coordinates A 0.00 m to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9) - <i>Effective web width</i> - <i>Stiffener area</i> - <i>Moment of inertia of stiffener</i> - <i>Critical Euler stress (column model)</i> - <i>Critical Euler stress (plate model)</i>	x = (0.00 ; 1.00) b,Rd < 0.5); $\boxed{[9.1.(2)]}$ [9.1.(2)] [9.1.(2)] [9.1.(5)] [9.1.(5)]
Panel A Point x = According TRANS' Symbols: bw Ast Ist Sig,cr,c Sig,cr,p u	Panel coordinates A 0.00 m to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9) - <i>Effective web width</i> - <i>Stiffener area</i> - <i>Moment of inertia of stiffener</i> - <i>Critical Euler stress (column model)</i> - <i>Critical Euler stress (plate model)</i> - <i>Coefficient for calculations of Ist,min</i>	x = (0.00 ; 1.00) b,Rd < 0.5); $\boxed{[9.1.(2)]}$ [9.1.(2)] [9.1.(2)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)]
Panel A Point x = According TRANS' Symbols: bw Ast Ist Sig,cr,c Sig,cr,p u	Panel coordinates A 0.00 m to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9) - <i>Effective web width</i> - <i>Stiffener area</i> - <i>Moment of inertia of stiffener</i> - <i>Critical Euler stress (column model)</i> - <i>Critical Euler stress (plate model)</i>	x = (0.00 ; 1.00) b,Rd < 0.5); $\boxed{[9.1.(2)]}$ [9.1.(2)] [9.1.(2)] [9.1.(5)] [9.1.(5)]
Panel A Point x = According TRANS' Symbols: bw Ast Ist Sig,cr,c Sig,cr,c u Sigm	Panel coordinates A 0.00 m to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9) - <i>Effective web width</i> - <i>Stiffener area</i> - <i>Moment of inertia of stiffener</i> - <i>Critical Euler stress (column model)</i> - <i>Critical Euler stress (plate model)</i> - <i>Coefficient for calculations of Ist,min</i>	x = (0.00 ; 1.00) b,Rd < 0.5); $\boxed{[9.1.(2)]}$ [9.1.(2)] [9.1.(2)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)]
Panel A Point x = According TRANS' Symbols:	Panel coordinates A to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9) - - Effective web width - Stiffener area - Moment of inertia of stiffener - Critical Euler stress (column model) - Critical Euler stress (plate model) - Coefficient for calculations of Ist,min - Stress due to lateral actions	x = (0.00 ; 1.00) b,Rd < 0.5); $\boxed{[9.1.(2)]}$ [9.1.(2)] [9.1.(2)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)]
Panel A Point x = According TRANS' Symbols: bw Ast Ist Sig,cr,c Sig,cr,c U Sigm Ist,min Ip	Panel coordinates A to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9) - - Effective web width - Stiffener area - Moment of inertia of stiffener - Critical Euler stress (column model) - Critical Euler stress (plate model) - Coefficient for calculations of Ist,min - Stress due to lateral actions - Minimum stiffness due to panel actions	x = (0.00 ; 1.00) b,Rd < 0.5); $\boxed{[9.1.(2)]}$ [9.1.(2)] [9.1.(2)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)]
Panel A Point x = According TRANS' Symbols: bw Ast Ist Sig,cr,c Sig,cr,c Sig,cr,p u Sigm Ist,min Ip It	Panel coordinates A to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9) - <i>Effective web width</i> - <i>Stiffener area</i> - <i>Moment of inertia of stiffener</i> - <i>Critical Euler stress (column model)</i> - <i>Critical Euler stress (plate model)</i> - <i>Coefficient for calculations of Ist,min</i> - <i>Stress due to lateral actions</i> - <i>Minimum stiffness due to panel actions</i> - <i>Polar moment of inertia of a stiffener</i>	x = (0.00 ; 1.00) b,Rd < 0.5); $\boxed{[9.1.(2)]}$ [9.1.(2)] [9.1.(2)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(7)]
Panel A Point x = According TRANS' Symbols: bw Ast Ist Sig,cr,c Sig,cr,c Sig,cr,p u Sigm Ist,min Ip It Nst,Ed	Panel coordinates A 0.00 m to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9) - <i>Effective web width</i> - <i>Stiffener area</i> - <i>Moment of inertia of stiffener</i> - <i>Critical Euler stress (column model)</i> - <i>Critical Euler stress (plate model)</i> - <i>Coefficient for calculations of Ist,min</i> - <i>Stress due to lateral actions</i> - <i>Minimum stiffness due to panel actions</i> - <i>Polar moment of inertia of a stiffener</i> - <i>Torsional moment of inertia of a stiffener</i>	x = (0.00 ; 1.00) b,Rd < 0.5); $\boxed{[9.1.(2)]}$ [9.1.(2)] [9.1.(2)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(7)] [9.1.(7)]
Panel A Point x = According TRANS Symbols: bw Ast Ist Sig,cr,c Sig,cr,p u Sigm Ist,min Ip It Nst,Ed Mst,Ed	Panel coordinates A 0.00 m to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9) - <i>Effective web width</i> - <i>Stiffener area</i> - <i>Moment of inertia of stiffener</i> - <i>Critical Euler stress (column model)</i> - <i>Critical Euler stress (plate model)</i> - <i>Coefficient for calculations of Ist,min</i> - <i>Stress due to lateral actions</i> - <i>Minimum stiffness due to panel actions</i> - <i>Polar moment of inertia of a stiffener</i> - <i>Torsional moment of inertia of a stiffener</i> - <i>Stiffener compressive force</i>	x = (0.00 ; 1.00) b,Rd < 0.5); $\boxed{9.1.(2)}$ [9.1.(2)] [9.1.(2)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(7)] [9.1.(7)] [9.3.3.(3)]
Panel A Point x = According TRANS' Symbols: bw Ast Ist Sig,cr,c Sig,cr,c u Sig,cr,p u Sigm Ist,min	Panel coordinates A 0.00 m to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9) - <i>Effective web width</i> - <i>Stiffener area</i> - <i>Moment of inertia of stiffener</i> - <i>Critical Euler stress (column model)</i> - <i>Critical Euler stress (plate model)</i> - <i>Coefficient for calculations of Ist,min</i> - <i>Stress due to lateral actions</i> - <i>Minimum stiffness due to panel actions</i> - <i>Polar moment of inertia of a stiffener</i> - <i>Torsional moment of inertia of a stiffener</i> - <i>Stiffener compressive force</i> - <i>Additional moment due to lateral actions of panels</i>	x = (0.00 ; 1.00) b,Rd < 0.5); $\boxed{9.1.(2)}$ [9.1.(2)] [9.1.(2)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(7)] [9.1.(7)] [9.1.(7)] [9.3.3.(3)] [9.1.(6)]
Panel A Point x = According TRANS' Symbols: bw Ast Ist Sig,cr,c Sig,cr,p u Sigm Ist,min Ip It Nst,Ed Mst,Ed Lam,st	Panel coordinates A to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9) - Effective web width - Stiffener area - Moment of inertia of stiffener - Critical Euler stress (column model) - Critical Euler stress (plate model) - Coefficient for calculations of Ist,min - Stress due to lateral actions - Minimum stiffness due to panel actions - Polar moment of inertia of a stiffener - Torsional moment of inertia of a stiffener - Stiffener compressive force - Additional moment due to lateral actions of panels - Non-dimensional slenderness of stiffener due to buckling	x = (0.00 ; 1.00) b,Rd < 0.5); $\boxed{9.1.(2)]}$ [9.1.(2)] [9.1.(2)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(7)] [9.1.(7)] [9.3.3.(3)] [9.1.(6)] [9.4.(2)]
Panel A Point x = According TRANS' Symbols: bw Ast Ist Sig,cr,c Sig,cr,p u Sigm Ist,min Ip It Nst,Ed Mst,Ed Lam,st Xst	Panel coordinates A to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9) - Effective web width - Stiffener area - Moment of inertia of stiffener - Critical Euler stress (column model) - Critical Euler stress (plate model) - Coefficient for calculations of Ist,min - Stress due to lateral actions - Minimum stiffness due to panel actions - Polar moment of inertia of a stiffener - Torsional moment of inertia of a stiffener - Stiffener compressive force - Additional moment due to lateral actions of panels - Non-dimensional slenderness of stiffener due to buckling - Stiffener buckling coefficient	x = (0.00 ; 1.00) b,Rd < 0.5); [9.1.(2)] [9.1.(2)] [9.1.(2)] [9.1.(2)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(7)] [9.1.(7)] [9.1.(7)] [9.1.(7)] [9.1.(6)] [9.4.(2)] [9.4.(2)] [9.1.(3)]
Panel A Point x = According TRANS' Symbols: bw Ast Ist Sig,cr,c Sig,c Si	Panel coordinates A to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9) - Effective web width - Stiffener area - Moment of inertia of stiffener - Critical Euler stress (column model) - Critical Euler stress (plate model) - Coefficient for calculations of Ist,min - Stress due to lateral actions - Minimum stiffness due to panel actions - Polar moment of inertia of a stiffener - Torsional moment of inertia of a stiffener - Stiffener compressive force - Additional moment due to lateral actions of panels - Non-dimensional slenderness of stiffener due to buckling - Stiffener buckling coefficient - Stiffener buckling capacity	x = (0.00 ; 1.00) b,Rd < 0.5); [9.1.(2)] [9.1.(2)] [9.1.(2)] [9.1.(2)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(7)] [9.1.(7)] [9.1.(7)] [9.1.(7)] [9.1.(6)] [9.4.(2)] [9.4.(2)] [9.1.(3)] mer [9.4.(3)]
Panel APoint $x =$ AccordingTRANS'Symbols:bwAstIstSig,cr,cSig,cr,cSigmIst,minIpItNst,EdMst,EdLam,stXstNst,b,RdeNMst,RdStiffener 1	Panel coordinates A to [7.1.(1)] checking of NTM interaction is not necessary (VEd/V VERSE STIFFENER RESISTANCE (EC3 art. 9) • Effective web width • Stiffener area • Moment of inertia of stiffener • Critical Euler stress (column model) • Critical Euler stress (plate model) • Coefficient for calculations of Ist,min • Stress due to lateral actions • Minimum stiffness due to panel actions • Polar moment of inertia of a stiffener • Torsional moment of inertia of a stiffener • Stiffener compressive force • Additional moment due to lateral actions of panels • Non-dimensional slenderness of stiffener due to buckling • Stiffener buckling coefficient • Stiffener buckling capacity • Eccentricity of a compressive force acting on unilateral stiffe • Stiffener resistance for bending in the plane perpendicular to	x = (0.00 ; 1.00) b,Rd < 0.5); $[9.1.(2)] [9.1.(2)] [9.1.(2)] [9.1.(2)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(5)] [9.1.(7)] [9.1.(7)] [9.3.3.(3)] [9.3.3.(3)] [9.4.(2)] [9.4.(2)] [9.4.(2)] [9.4.(2)] [9.4.(3)] mer [9.4.(3)] meb [9.4.(3)]$

Stiffener 2Point x = 2.36 mATTENTION! According to the (5.63) formulae it is not necessary to check a stiffener subjected to buckling.

STABII	LITY OF COMPRESSIVE FLANGE (EC	3 art. 8.1)
Symbols	:	
k	- Factor depending on section class	[8.(1)]
Aw	- Area of stiffener	[8.(1)]
Afc	- Area of compressive flange	[8.(1)]
k = 0.30	Aw = 222 mm2	Afc = 120 mm2
Check cor	ndition: (8.1)	
	$D/tw = 24.67 < k(E/fyf)*[Aw/Afc]^0.5 = 315.66$	OK!

Analyzed beam meets the Eurocode 3 requirements

BEAMS DESIGN

Name	: FOUNDATION
Reference level	:
Maximum cracking	: 0.30 (mm)
Exposure	: X0
Concrete creep coefficient	$: \phi_{\pi} = 3.20$
Cement class	: N
Concrete age (loading moment)	: 28 (days)
Concrete age	: 50 (years)

1

Number: 1

- Concrete age after erecting a structure : 365 (years)
- Structure class : S1
- Fire resistance class : no requirements
- FFB Recommendations 7.4.3(7) : 0.00

2 TYPICAL GROUND BEAM DESIGN

2.1 Material properties:

 Concrete CONCR f_{ck} = 20.00 (MPa) Rectangular stress distribution [3.1.7(3)] 2501.36 (kG/m3) Density 20.0 (mm) Aggregate size : f_{yk} = 500.00 (MPa) • Longitudinal reinforcement: : Horizontal branch of the stress-strain diagram Ductility class : C • Transversal reinforcement: : f_{yk} = 500.00 (MPa) Horizontal branch of the stress-strain diagram Ductility class : C fyk = 500.00 (MPa) Additional reinforcement: : Horizontal branch of the stress-strain diagram

2.2 Geometry:

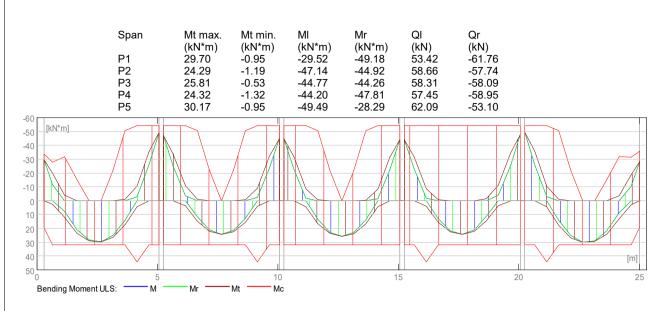
2.2.1	Span	Position	L.supp. (m)	L (m)	R.supp. (m)
	Section	Span 0.30 ngth: L _o = 5.00 (m) from 0.00 to 4.75 (200 x 400 (mm) without left slab without right slab	4 .75	0.20	()
2.2.2	Section	Position Span 0.20 ngth: $L_0 = 5.00$ (m) from 0.00 to 4.80 (200 x 400 (mm) without left slab without right slab	L.supp. (m) 4.80 m)	L (m) 0.20	R.supp. (m)
2.2.3	Section	Position Span 0.20 ngth: $L_0 = 5.00 (m)$ from 0.00 to 4.80 (200 x 400 (mm) without left slab without right slab	L.supp. (m) 4.80 m)	L (m) 0.20	R.supp. (m)
2.2.4	Section	Position Span 0.20 ngth: $L_0 = 5.00 (m)$ from 0.00 to 4.80 (200 x 400 (mm) without left slab without right slab	L.supp. (m) 4.80 m)	L (m) 0.20	R.supp. (m)
2.2.5	Section	Position Span 0.20 ngth: $L_0 = 5.00$ (m) from 0.00 to 4.75 (200 x 400 (mm) without left slab without right slab	L.supp. (m) 4.75 m)	L (m) 0.30	R.supp. (m)

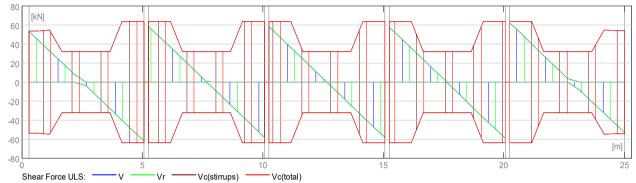
2.3 Calculation options:

- Regulation of combinations
- Calculations according to
- Seismic dispositions
- Precast beam
- Cover

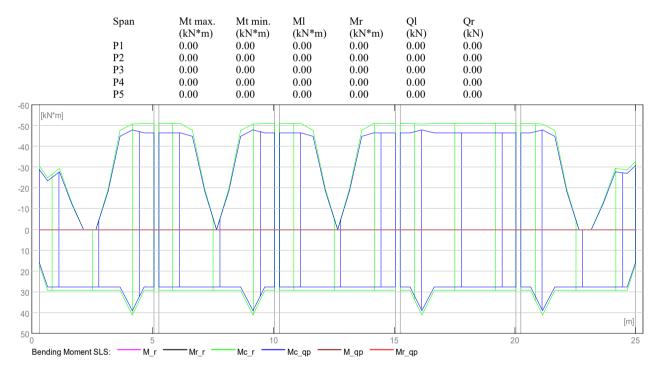
- : BS-EN 1990:2002 NA:2004 : BS EN1992-1-1:2004 NA:2005 : No requirements : no : bottom c = 40 (mm) : side c1= 40 (mm) : top c2= 40 (mm) : Cdev = 10(mm), Cdur = 0(mm)
- Cover deviations
- Coefficient $\beta_2 = 0.50$
- Method of shear calculations

2.4 Calculation results:

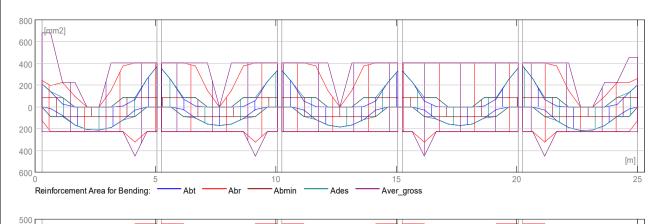

2.4.1 Internal forces in ULS

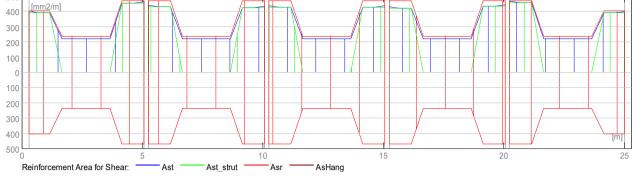

Page : 5

: long-term or cyclic load


: strut inclination

File: @STRUCTURE CALCULATION NOTE@ Project: @WORKSHOP @


2.4.2 Internal forces in SLS



2.4.3 Required reinforcement area

Span	Span (mm2)		Left support (mm2)		Right support (mm2)	
	bottom	top	bottom	top	bottom	top
P1	214	0	0	212	0	372
P2	173	0	0	354	0	336
P3	184	0	0	334	0	330
P4	173	0	0	330	0	360
P5	217	0	0	374	0	203

Date : 26/11/18

2.4.4 Deflection and cracking

 wt(QP)
 Total due to quasi-permanent combination

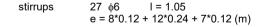
 wt(QP)dop
 Allowable due to quasi-permanent combination

 Dwt(QP)
 Deflection increment from the quasi-permanent load combination after erecting a structure.

 Dwt(QP)dop
 Admissible deflection increment from the quasi-permanent load combination after erecting a structure.

wk - width of perpendicular cracks

Span	wt(QP)	wt(QP)dop	Dwt(QP)	Dwt(QP)dop	wk
	(mm)	(mm)	(mm)	(mm)	(mm)
P1	0	20	0	10	0.0
P2	0	20	0	10	0.0
P3	0	20	0	10	0.0
P4	0	20	0	10	0.0
P5	0	20	0	10	0.0


2.5 Reinforcement:

```
2.5.1 P1 : Span from 0.30 to 5.05 (m)
```

```
Longitudinal reinforcement:
  bottom ()
٠
   2 ¢12
            I = 4.32
                      from 0.07
                                    4.39
                                 to
  assembling (top) ()
   2 φ8
            I = 2.60
                      from 1.10
                                 to
                                    3.70
   support ()
   l = 1.86
                      from 0.04
                                    1.90
                                 to
   I = 4.66
                      from 2.82
                                 to 7.48
   l = 1.75
                      from 0.05
                                 to 0.05
Transversal reinforcement:
• main ()
   stirrups
              l = 1.05
              e = 1*0.04 + 8*0.14 + 11*0.24 + 7*0.12 (m)
```

2.5.2 P2 : Span from 5.25 to 10.05 (m)

Lo	ong	itudir	nal reinfor	cement:		,
٠	bc	ottom	()			
				from 3.81	to	9.38
•	as	semb	ling (top) ()			
				from 6.60	to	8.70
•		ipport	~			
				from 7.82	to	12.48
Transversal reinforcement:						
٠	m	ain ()				

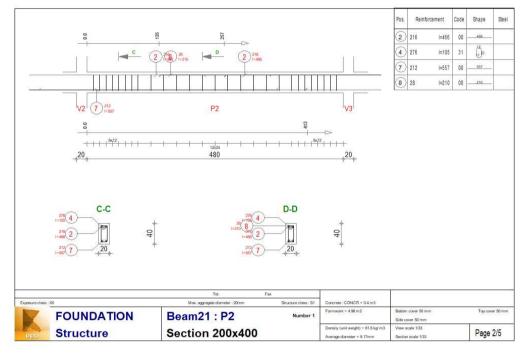
2.5.3 P3 : Span from 10.25 to 15.05 (m) Longitudinal reinforcement:

bottom () 2 \u03c612 | = 7.70 from 8.80 to 16.50 assembling (top) () 2 \u03c68 | = 2.10 from 11.60 to 13.70 Transversal reinforcement: main () stirrups 27 \u03c66 | = 1.05 e = 8*0.12 + 12*0.24 + 7*0.12 (m)

2.5.4 P4 : Span from 15.25 to 20.05 (m) Longitudinal reinforcement:

• bottom ()

Date : 26/11/18


2.5.5 P5 : Span from 20.25 to 25.00 (m)

				20.20 10 2.	5.00	
Lc	ong	itudin	al reinforc	ement:		
•	bc	ottom ()			
			I = 4.32	from 20.91	to	25.23
•	as	semb	ling (top) ()			
			I = 2.60	from 21.60	to	24.20
•	sι	ipport	()			
	2		l = 1.86	from 23.40	to	25.26
	1	T · -	l = 1.75		to	25.25
Tr	ans	sversa	al reinforce	ement:		

• main ()

stirrups 27 $\phi 6$ I = 1.05

e = 1*0.11 + 7*0.12 + 11*0.24 + 8*0.14 (m)

3 Material survey:

- Concrete volume = 2.02 (m3)
- Formwork = 25.18 (m2)
- Steel

• Total weight = 157.47 (kG)

- Density = 77.80 (kG/m3)
- Average diameter = 9.1 (mm)
- Survey according to diameters:

er Length	Weight
(m)	(kG)
142.21	31.57
18.83	7.43
65.88	58.51
37.98	59.96
	(m) 142.21 18.83 65.88

COLUMNS DESIGN		
Name	:	
Reference level	: 0.00 (m)	
Concrete creep coefficient	: φ _p = 3.16	
Date : 26/11/18	Page : 8	

Cement class	: N
 Environment class 	: X0
Structure class	: S1

2 **TYPICAL COLUMN C1 DESIGN**

Number: 1

f_{yk} = 250.00 (MPa)

2.1 Material properties:

Concrete	: CONCR	f _{ck} = 20.00 (MPa)
Unit weight	: 2501.36 (kG/m3)	
Aggregate size	: 20.0 (mm)	
Longitudinal reinforcement:	: R	f _{yk} = 250.00 (MPa)
Ductility class	: C	

: R

•	Longitudinal reinforcement:
	Ductility class
•	Transversal reinforcement:

2.2 Geometry:

Concrete

2.2.1	Rectangular	300 x 300 (mm)
2.2.2	Height: L	= 3.45 (m)
2.2.3	Slab thickness	= 0.00 (m)
2.2.4	Beam height	= 0.30 (m)
2.2.5	Cover	= 40 (mm)

Calculation options: 2.3

 Calculations according to 	: BS EN1992-1-1:2004 NA:2005
 Seismic dispositions 	: No requirements
 Precast column 	: no
 Pre-design 	: no
 Slenderness taken into account 	: yes
Compression	: with bending
• Ties	: to slab
 Fire resistance class 	: No requirements

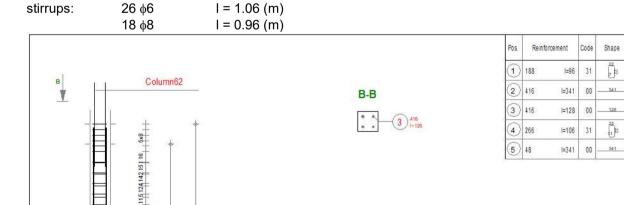
2.4 Loads:

Case	Nature	Group	$\gamma_{\rm f}$	Ν	My(s)	My(i)	Mz(s)	Mz(i)
COMB1	design(Structural)	46	1.00	(kN) 213.13	```	(kN*m) -0.45	(kN*m) 0.66	(kN*m) -0.20
24								

 $\gamma_{
m f}$ - load factor

2.5 **Reinforcement:**

Main bars (R):


٠	4 	I = 3.41	(m)
---	-----------	----------	-----

• 4 ϕ 16 l = 3.41 (m)

Dowel bars (R):

• 4 ϕ 16 l = 1.28 (m)

Transversal reinforcement: (R): stirrups: 26 φ6

Steel

R

R

R

R

R

345 345		581		
♥」 単 ↓ ↓ → <u>30</u> →				
	Td. Fax	2 8	Steel R = 35 kg	
<u> </u>	Tel. Fax Max. aggregate d'ameter ; 20mm Structure class : S1	Concrete : CONCR = 0.283 m3	Steel R = 13 kg	
Exposure class: X0	New Control Co	Concrete: CONCR = 6.283 m3 Formwork = 3.78 m2	A REAL PROPERTY AND A REAL PROPERTY AND AND	

Date : 26/11/18

3 Column: Column33

Number: 1

	3.1	Material	properties:
--	-----	----------	-------------

•	Concrete	: CONCR	f _{ck} = 20.00 (MPa)
	Unit weight	: 2501.36 (kG/m3)	
	Aggregate size	: 20.0 (mm)	
٠	Longitudinal reinforcement:	: T	f _{yk} = 460.00 (MPa)
	Ductility class	: A	
•	Transversal reinforcement:	: T	f _{yk} = 460.00 (МРа)

3.2 Geometry:

3.2.1	Rectangular	400 x 200 (mm)
3.2.2	Height: L	= 3.45 (m)
3.2.3	Slab thickness	= 0.00 (m)
3.2.4	Beam height	= 0.30 (m)
3.2.5	Cover	= 40 (mm)

3.3 Calculation options:

 Calculations according to 	: BS EN1992-1-1:2004 NA:2005
 Seismic dispositions 	: No requirements
Precast column	: no
Pre-design	: no
 Slenderness taken into account 	: yes
Compression	: with bending
Ties	: to slab
Fire resistance class	: No requirements

3.4 Loads:

Case	Nature	Group	γ_{f}	Ν	My(s)	My(i)	Mz(s)	Mz(i)
COMB1	design(Structural)	33	1.00	(kN) 411.12	(kN*m) -0.07	(kN*m) 0.17	(kN*m) -2.20	(kN*m) -79.85

 $\gamma_{
m f}$ - load factor

3.5 Calculation results:

Safety factors Rd/Ed = 1.82 > 1.0

3.5.1 ULS/ALS Analysis

Design combination: CC Combination type: ULS Internal forces:	DMB1 (B)	
Nsd = 411.12 (kN)	Msdy = 0.17 (kN*m)	Msdz = -79.85 (kN*m)
Design forces:		
Lower node		
N = 411.12 (kN)	N*etotz = 8.22 (kN*r	n) N*etoty= -83.45 (kN*m)
Eccentricity:	a = (NA) (NI)	$(\mathbf{M}_{\mathbf{Z}}/\mathbf{N})$
Eccentricity: Static	ez (My/N) eEd: 0 (mm)	ey (Mz/N) -194 (mm)
Imperfection	ei: 0 (mm)	9 (mm)
Initial	e0: 0 (mm)	-185 (mm)
Minimal	emin: 20 (mm)	20 (mm)
Total	etot: 20 (mm)	-203 (mm)

3.5.1.1. Detailed analysis-Direction Y:

3.5.1.1.1 Slenderness analysis

Non-sway structure

L (m) Lo (m) λ λlim 3.50 3.50 60.62 24.92 Slender column

3.5.1.1.2 Buckling analysis

3.5.1.2. Detailed analysis-Direction Z:

 $\begin{array}{ll} M2 = -2.20 \; (kN^*m) & M1 = -79.85 \; (kN^*m) \\ \text{Case: Cross-section at the column end (Lower node), Slenderness not taken into account} \\ M0 = -79.85 \; (kN^*m) \\ ea = 01^*\text{lo}/2 = 9 \; (mm) \end{array}$

Date : 26/11/18

Steel

т

т

т

т

т

т

 $\theta 1 = \theta o * \alpha h * \alpha m = 0.01$ $\theta o = 0.01$ αh = 1.00 $\alpha m = (0,5(1+1/m))^{0.5} = 1.00$ m = 1.00 Ma = N*ea = 3.60 (kN*m) MEdmin = 8.22 (kN*m) M0Ed = max(MEdmin,M0 + Ma) = -83.45 (kN*m) 3.5.2 Reinforcement: Asr = 3267 (mm2) Real (provided) area Ratio: ρ = 4.08 % **Reinforcement:** 3.6 Main bars (T): • 4 ¢20 I = 3.41 (m)I = 4.13 (m) • 6 \ \ d 16 Transversal reinforcement: (T): stirrups: I = 0.96 (m)Shape Pos. Reinforcement Code 1 228 184 31 Column49 в 2 28 H22 00 5 W. ¥ B-B m V s 3 416 1418 28 No H 4 618 5757 5756565 128 2x1293 2x17 3145 122x9 16 144 17 172 1551211 2x12 1413 26 5 40 341 1=841 00 8 218 ⊫88 31 1. 4 345 315 40 40 Tel. Steel T = 99 kg Fax Max. aggregate diameter : 20mm Steel T = 13.6 kg Exposure class : X0 Concrete : CONCR = 0.252 m Structure class : St Farmwark = 3.78 m2 Cover 40 mm Column33 Number. Density (unit weight) = 448.4 kg/m3/iew scale 1/33 Structure Section 400x200 Page 1/1 Section scale 1/33

Material survey: 4

- Concrete volume = 0.54 (m3)
- Formwork = 7.56 (m2)٠
- Steel T
 - Total weight = 47.97 (kG)
 - Density = 89.57 (kG/m3)
 - Average diameter = 9.2 (mm) ٠
 - Reinforcement survey: ٠

Diameter	Length	Weight
	(m)	(kG)
6	27.60	6.13

8	30.96	12.22
16	18.76	29.62

Steel T

- = 112.61 (kG) Total weight
- Density = 210.29 (kG/m3)
- Average diameter = 12.4 (mm)
- Reinforcement survey:

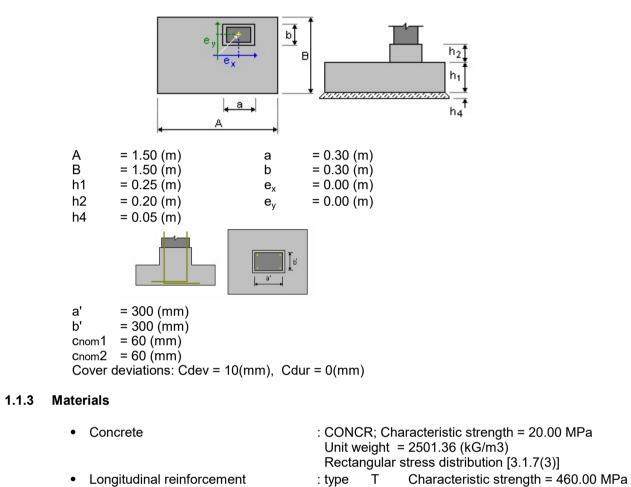
Diameter	Length	Weight			
	(m)	(kG)			
6	25.62	5.69			
8	20.09	7.93			
16	41.39	65.34			
20	13.64	33.65			

Date : 26/11/18

C:\Users\AUGUSTIN PC\Documents\Autodesk\Output\RUBAVU\Foundation2.rtf

TYPICAL COLUMN BASE F1 1

• Shape selection


Number: 1

1.1 **Basic data**

1.1.1 Assumptions

- Geotechnic calculations according to : BS 8004
- Concrete calculations according to
 - : BS EN1992-1-1:2004 NA:2005 : without limits

1.1.2 Geometry:

- Longitudinal reinforcement
 - - Ductility class: A Horizontal branch of the stress-strain diagram
- Transversal reinforcement :type T Characteristic strength = 460.00 MPa ٠ Additional reinforcement: Т Characteristic strength = 460.00 MPa : type

1.1.4 Loads:

Founda	tion loads:							
Case	Nature		Group	N (kN)	Fx (kN)	Fy (kN)	Mx (kN*m)	My (kN*m)
COMB1	design			213 [́] .13	1.96	Ò.25	-0.20	Ò.45 ´
Backfill	loads:							
Case	Nature	Q1 (kN/m2)						

1.1.5 Combination list

1/	ULS: COMB1 N=213.13 Mx=-0.20 My=0.45 Fx=1.96 Fy=0.25
2/*	ULS : COMB1 N=213.13 Mx=-0.20 My=0.45 Fx=1.96 Fy=0.25

1.2 **Geotechnical design**

1.2.1 Assumptions

Foundation design for: Capacity

Rotation

1.2.2 Soil:

Soil level:	N_1	= 0.00 (m)
Column pier level:	N _a	= 0.00 (m)
Minimum reference level:	N _f	= -0.50 (m)

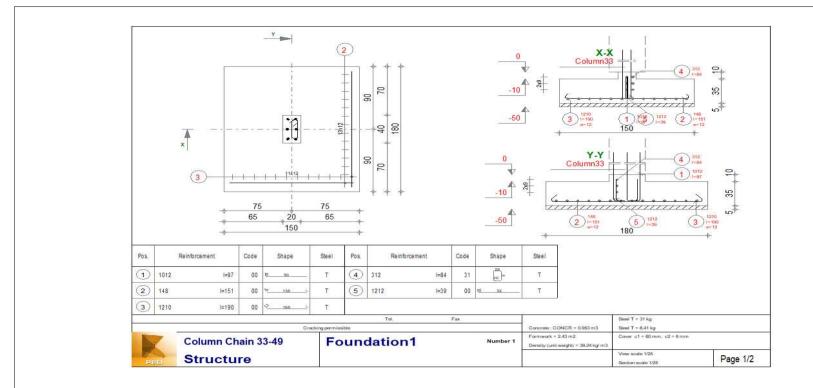
Date : 26/11/18

	well graded gravels • Soil level: 0.00 (m) • Unit weight: 2243.38 (kC • Unit weight of solid: 270 • Internal friction angle: • Cohesion: 0.00 (MPa)	
1.2.3	Limit states	
1.3 F	RC design	
1.3.1	Assumptions	
	ExposureStructure class	: X0 : S1
1.3.2	Analysis of punching and she	ar
	Punching	
	Design combination Load factors:	ULS: COMB1 N=213.13 Mx=-0.20 My=0.45 Fx=1.96 Fy=0.25 1.35 * Foundation weight 1.35 * Soil weight
	Design load: Nr = 245.19 (kN) Length of critical circumferer Punching force: Section effective height Reinforcement ratio: Shear stress: Admissible shear stress: Safety factor:	Mx = -0.31 (kN*m) $My = 1.33 (kN*m)$
1.3.3	Required reinforcement Spread footing:	
	bottom:	
		x=-0.20 My=0.45 Fx=1.96 Fy=0.25 A _{sx} = 287 (mm2/m)
	ULS : COMB1 N=213.13 M: Mx = 29.69 (kN*m)	x=-0.20 My=0.45 Fx=1.96 Fy=0.25 A _{sy} = 283 (mm2/m)
	A _{s min}	= 234 (mm2/m)
	top:	A' _{sx} = 0 (mm2/m) A' _{sy} = 0 (mm2/m)
	A _{s min}	= 0 (mm2/m)
	Column pier: Longitudinal reinforcement A	$A = 180 \text{ (mm2)} A_{\text{min.}} = 180 \text{ (mm2)}$ = 2 * (Asx + Asy) = 24 (msr2)
1.3.4	Asx Provided reinforcement	a = 34 (mm2) Asy = 56 (mm2)
	Spread footing: Bottom:	
	Along X axis: 6 T 12 I = 1.57 (m) 10 T 12 I = 1.38 (m) Along X axis:	e = 1*-0.62 + 5*0.25 e = 1*-0.68 + 9*0.15
	Along Y axis: 6 T 12 I = 1.57 (m) 10 T 12 I = 1.38 (m)	e = 1*-0.62 + 5*0.25 e = 1*-0.68 + 9*0.15

Longitudinal reinforcement

Along Y axis: 4 T 12 l = 0.39 (m) e = 1*-0.07 + 1*0.14 Transversal reinforcement 3 T 12 I = 0.83 (m)

e = 1*0.20 + 2*0.09


Dowels

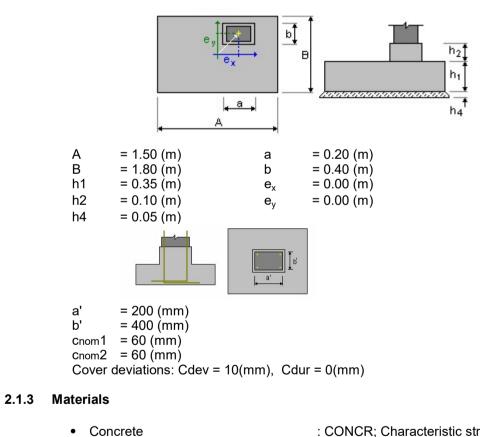
Longitudinal reinforcement 4 T 12 | = 0.97 (m) 8 T 6 | = 0.96 (m)

e = 1*-0.10 + 1*0.21 e = 1*-0.08 + 1*0.00 + 2*0.08 + 1*0.00

Date : 26/11/18

File: @STRUCTURE CALCULATION NOTE@ Project: @WORKSHOP @

2 TYPICAL COLUMN BASE F1


Number: 1

2.1 Basic data

2.1.1 Assumptions

- Geotechnic calculations according to : BS 8004
- Concrete calculations according to : BS EN1992-1-1:2004 NA:2005
- Shape selection
- : without limits

2.1.2 Geometry:

: CONCR; Characteristic strength = 20.00 MPa Unit weight = 2501.36 (kG/m3) Rectangular stress distribution [3.1.7(3)] : type T Characteristic strength = 460.00 MP

•	Longit	udinal reinfo	prcement		Du	e T Ictility cla prizontal	ass: A		c strength = 460.00 MPa ess-strain diagram	
•	Trans	versal reinfo	orcement		: typ	e T	Cha	racteristi	c strength = 460.00 MPa	
•	Additio	onal reinford	ement:		: typ	e T	Cha	racteristi	c strength = 460.00 MPa	
2.1.4 Load	ds:									
		ion loads:				_	_			
C	Case	Nature		Group	N (kN)	Fx (kN)	Fy (kN)	Mx (kN*m)	My (kN*m)	
С	COMB1	design			411.12	-0.07	22.19	-79.85	-0.17	
E	Backfill	loads:								
С	Case	Nature	Q1 (kN/m2)							
2.1.5 Com	nbinatio	n list								
te : 26/11/18					Dog	e : 14				

1/ 2/*

ULS : COMB1 N=411.12 Mx=-79.85 My=-0.17 Fx=-0.07 Fy=22.19 ULS : COMB1 N=411.12 Mx=-79.85 My=-0.17 Fx=-0.07 Fy=22.19

2.2 **Geotechnical design**

2.2.1 Assumptions

Foundation design for:

- Capacity
- Rotation

2.2.2 Soil:

Soil level:	N_1	= 0.00 (m)
Column pier level:	N _a	= 0.00 (m)
Minimum reference level:	N _f	= -0.50 (m)

- well graded gravels
 Soil level: 0.00 (m)
 Unit weight:2243.38 (kG/m3)
 Unit weight of solid: 2702.25 (kG/m3)
 - Internal friction angle:Cohesion: 0.00 (MPa) 42.0 (Deg)

2.2.3 Limit states

2.3 RC design

2.3.3

2.3.1 Assumptions

٠	Exposure	: X0
٠	Structure class	: S1

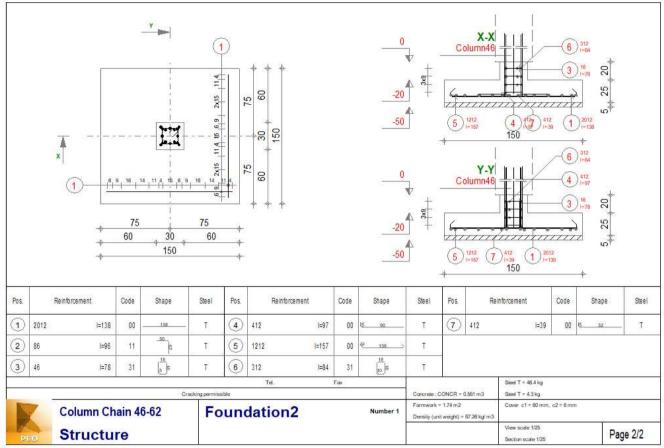
2.3.2 Analysis of punching and shear

Punching

Design combination Load factors:	ULS: COMB1 N=411.12 Mx=-79.85 My=-0.17 Fx=-0.07 Fy=22.19 1.35 * Foundation weight 1.35 * Soil weight	
Design load: Nr = 450.46 (kN) Length of critical circumferen Punching force: Section effective height Reinforcement ratio: Shear stress: Admissible shear stress: Safety factor:	Mx = -89.84 (kN*m) My = -0.20 (kN*m)	
Required reinforcement		
Spread footing:		
bottom:		
ULS: COMB1 N=411.12 M My = 63.46 (kN*m)	x=-79.85 My=-0.17 Fx=-0.07 Fy=22.19 A _{sx} = 364 (mm2/m)	
ULS : COMB1 N=411.12 M Mx = 100.49 (kN*m)	x=-79.85 My=-0.17 Fx=-0.07 Fy=22.19 A _{sy} = 623 (mm2/m)	
A _{s min}	= 364 (mm2/m)	
top:	A' _{sx} = 0 (mm2/m)	
	Load factors: Design load: Nr = 450.46 (kN) Length of critical circumfered Punching force: Section effective height Reinforcement ratio: Shear stress: Admissible shear stress: Safety factor: Required reinforcement Spread footing: bottom: ULS : COMB1 N=411.12 M: My = 63.46 (kN*m) ULS : COMB1 N=411.12 M: Mx = 100.49 (kN*m)	

 $A'_{sy} = 0 (mm2/m)$

 $A_{\rm s\;min}$ = 0 (mm2/m)


Column pier: Longitudinal reinforcement = 1063 (mm2) A _{min.} = 160 (mm2) А = 2 * (Asx + Asy) = 70 (mm2) Asy А = 462 (mm2) Asx

2.3.4 Provided reinforcement

```
Spread footing:
Bottom:
Along X axis:
14 T 12 I = 1.51 (m)
                                  e = 1*-0.78 + 13*0.12
Along Y axis:
```

Date : 26/11/18

12 T 12 I = 1.90 (m) e = 1*-0.65 + 11*0.12 Pier Longitudinal reinforcement Along X axis: 8 T 12 l = 0.39 (m) e = 1*-0.01 + 3*0.01 Along Y axis: 4 T 12 l = 0.39 (m) e = 1*-0.12 + 1*0.24 **Transversal reinforcement** l = 0.83 (m) e = 1*0.20 + 2*0.09 3 T 12 Dowels Longitudinal reinforcement 10 T 12 I = 0.97 (m) e = 1*-0.15 + 1*0.01 + 1*0.15 + 1*0.14 + 1*0.01

3 Material survey:

• Concrete volume = 1.53 (m3)

- Formwork = 4.17 (m2)
- Steel T

٠

• Total weight = 88.13 (kG)

• Density = 57.47 (kG/m3)

- Average diameter = 10.5 (mm)
- Survey according to diameters:

Diameter	Length	Weight
	(m)	(kG)
8	21.09	8.32
10	22.84	14.09
12	71.31	63.33

COLUMN AT FIRST FLOOR

1 Level:

Date : 26/11/18

Name	: Column Chain 46-62
Reference level	: 3.50 (m)
Concrete creep coefficient	: φ _p = 3.16
Cement class	: N
Environment class	: X0
Structure class	: S1

2 TYPICAL COLUMN C2 DESIGN

Number: 1

2.1 Material properties:

 Concrete Unit weight Aggregate size 	: CONCR : 2501.36 (kG/m3) : 20.0 (mm)	f _{ck} = 20.00 (MPa)
 Longitudinal reinforcement: Ductility class 	: C	f _{yk} = 500.00 (MPa)
Transversal reinforcement:	:	f _{yk} = 500.00 (MPa)

2.2 Geometry:

2.2.1	Rectangular	300 x 300 (mm)
2.2.2	Height: L	= 3.50 (m)
2.2.3	Slab thickness	= 0.00 (m)
2.2.4	Beam height	= 0.30 (m)
2.2.5	Cover	= 40 (mm)

2.3 Calculation options:

 Calculations according to 	: BS EN1992-1-1:2004 NA:2005
 Seismic dispositions 	: No requirements
 Precast column 	: no
 Pre-design 	: no
 Slenderness taken into account 	: yes
Compression	: with bending
• Ties	: to slab
 Fire resistance class 	: No requirements

2.4 Loads:

Case	Nature	Group	γ_{f}	Ν	My(s)	My(i)	Mz(s)	Mz(i)
COMB1	design(Structural)	62	1.00	(kN) 107.41	```	(kN*m) -2.66	(kN*m) 1.02	(kN*m) -2.18
24								

 $\gamma_{
m f}$ - load factor

2.5 Calculation results:

Safety factors Rd/Ed = 4.67 > 1.0

2.5.1 ULS/ALS Analysis

Design combination: COMB1 (C) Combination type: ULS Internal forces: Nsd = 107.41 (kN) Msdy = -1.19 (kN*m) Msdz = -0.90 (kN*m) Design forces: Cross-section in the middle of the column N = 107.41 (kN) N*etotz = -3.12 (kN*m) N*etoty= -2.15 (kN*m) Eccentricity: $= e^{z} (My/N) e^{y} (Mz/N)$

Eccentricity: Static	ez (My/N)	ey (Mz/N) -8 (mm)
	eEd: -11 (mm) ei: 9 (mm)	· · ·
Imperfection Initial		0 (mm)
	e0: -2 (mm)	-8 (mm)
Minimal	emin: 20 (mm)	20 (mm)
Total	etot: -29 (mm)	-20 (mm)

2.5.1.1. Detailed analysis-Direction Y:

2.5.1.1.1 Slenderness analysis

Non-sway structure

L (m) Lo (m) λ λlim 3.50 3.50 40.41 32.38 Slender column

2.5.1.1.2 Buckling analysis

 $\begin{array}{ll} M2 = 1.00 \; (kN^*m) & M1 = -2.66 \; (kN^*m) & Mmid = -1.19 \; (kN^*m) \\ Case: \; Cross-section in the middle of the column, \; Slenderness taken into account \\ M0e = 0.6^*M02+0.4^*M01 = -1.19 \; (kN^*m) \\ & M0emin = 0.4^*M02 \\ & M0 = max(M0e, \; M0emin) \\ \end{array}$

ea = $\theta 1$ *lo/2 = 9 (mm) $\theta 1 = \theta \circ * \alpha h * \alpha m = 0.01$ $\theta \circ = 0.01$

Date : 26/11/18

$$\begin{aligned} \alpha h &= 1.00 \\ \alpha m &= (0,5(1+1/m))^{h} 0.5 = 1.00 \\ m &= 1.00 \end{aligned}$$
Method based on nominal stiffness
$$\begin{bmatrix} 1 + \frac{\beta}{(N_B / N) - 1} \end{bmatrix}_{= 1.46} \\ \beta &= 1.23 \\ Nb &= (\pi^{h} 2 * EJ) / 10^{h} 2 = 393.05 \text{ (kN)} \\ EJ &= Kc^*Ecd^*Jc^*Ks^*Es^*Js = 487.85 \text{ (kN*m2)} \\ &\qquad \varphi ef = 3.16 \\ Jc &= 675000000 \text{ (mm4)} \\ Js &= 1930999 \text{ (mm4)} \\ Kc &= 0.01 \text{ ()} \\ Ks &= 1.00 \text{ ()} \end{aligned}$$
MEdmin = 2.15 (kN*m)
$$M_{Ed} &= \max\left\{ M_{Ed\min}; \left[1 + \frac{\beta}{(N_B / N) - 1} \right] M_{0Ed} \right\}_{=-3.12 \text{ (kN*m)}} \end{aligned}$$

2.5.1.2. Detailed analysis-Direction Z:

 $\begin{array}{ll} M2 = 1.02 \ (kN^*m) & M1 = -2.18 \ (kN^*m) & Mmid = -0.90 \ (kN^*m) \\ Case: Cross-section in the middle of the column, Slenderness not taken into account \\ M0e = 0.6^*M02+0.4^*M01 = -0.90 \ (kN^*m) \\ & M0emin = 0.4^*M02 \\ & M0 = max(M0e, \ M0emin) \end{array}$ $ea = 0 \ (mm) \\ Ma = N^*ea = 0.00 \ (kN^*m) \\ MEdmin = 2 \ 15 \ (kN^*m) \\ \end{array}$

MEdmin = 2.15 (kN*m) M0Ed = max(MEdmin,M0 + Ma) = -2.15 (kN*m)

2.5.2 Reinforcement:

Real (provided) area	Asr = 201 (mm2)
Ratio:	ρ = 0.22 %

2.6 Reinforcement:

Main bars (): • 6 φ16 I = 3.46 (m)

Transversal reinforcement: ():stirrups: $26 \phi 6$ I = 1.06 (m)

3 TYPICAL COLUMN C1 DESIGN

Number: 1

3.1 Material properties:

 Concrete Unit weight Aggregate size Longitudinal reinforcement: Ductility class Transversal reinforcement: 		: CONCR : 2501.36 (kG/m3) : 20.0 (mm)	f _{ck} = 20.00 (MPa)	
		C C	f _{yk} = 500.00 (MPa) f _{yk} = 500.00 (MPa)	
3.2	Geometry:			
	3.2.1 Rectangular	300 x 300 (mm)		

0.2.1	rtootangalai	
3.2.2	Height: L	= 3.50 (m)
3.2.3	Slab thickness	= 0.00 (m)
3.2.4	Beam height	= 0.30 (m)
3.2.5	Cover	= 40 (mm)

3.3 Calculation options:

•	Calculations according to	
---	---------------------------	--

- Seismic dispositions
- Precast column
- Pre-design
- Slenderness taken into account
- Compression
- Ties
- Fire resistance class

3.4 Loads:

- : BS EN1992-1-1:2004 NA:2005
- : No requirements
- : no
- : no
- : yes
 - : with bending
- : to slab
- : No requirements

Ca	ase	Nature	Group	γ_{f}	Ν	,,,,	,,,,	()	Mz(i)
C	OMB1	design(Structural)	62	1.00	(kN) 107.41	(kN*m) 1.00	· · ·	· · ·	(kN*m) -2.18
$\gamma_{\rm f}$	- load factor								

Date : 26/11/18

3.5 Calculation results:

Safety factors Rd/Ed = 4.67 > 1.0

3.5.3 **ULS/ALS Analysis**

Design combination: COMB1 (C) Combination type: ULS Internal forces: Nsd = 107.41 (kN) Msdy = -1.19 (kN*m)Msdz = -0.90 (kN*m)Design forces: Cross-section in the middle of the column N = 107.41 (kN) N*etotz = -3.12 (kN*m) N*etoty= -2.15 (kN*m)

Eccentricity: Static	ez (My/N) eEd: -11 (mm)	ey (Mz/N) -8 (mm)
Imperfection	ei: 9 (mm)	0 (mm)
Initial	e0: -2 (mm)	-8 (mm)
Minimal	emin: 20 (mm)	20 (mm)
Total	etot: -29 (mm)	-20 (mm)

3.5.3.3. Detailed analysis-Direction Y:

3.5.3.3.1 Slenderness analysis

Non-sway structure

L (m)	Lo (m)	λ	λlim	
3.50	3.50	40.41	32.38	Slender column

3.5.3.3.2 Buckling analysis

M2 = 1.00 (kN*m) M1 = -2.66 (kN*m) Mmid = -1.19 (kN*m) Case: Cross-section in the middle of the column, Slenderness taken into account M0e = 0.6*M02+0.4*M01 = -1.19 (kN*m) M0emin = 0.4*M02M0 = max(M0e, M0emin) $ea = \theta 1 * lo/2 = 9 (mm)$ $\theta 1 = \theta 0 * \alpha h * \alpha m = 0.01$ $\theta o = 0.01$ αh = 1.00 $\alpha m = (0,5(1+1/m))^{0.5} = 1.00$ m = 1.00 Method based on nominal stiffness β 14 $(N_B / N) - 1$ = 1.46 β = 1.23 Nb = (π² * EJ)/ lo² = 393.05 (kN) EJ = Kc*Ecd*Jc+Ks*Es*Js = 487.85 (kN*m2) φ**ef = 3.16** Jc = 675000000 (mm4) Js = 1930999 (mm4) Kc = 0.01 () Ks = 1.00 () MEdmin = 2.15 (kN*m) $M_{Ed} = \max\left\{M_{Ed\min}; \left[1 + \frac{\beta}{(N_B / N) - 1}\right]M_{0Ed}\right\}$

3.5.3.4. Detailed analysis-Direction Z:

M1 = -2.18 (kN*m) M2 = 1.02 (kN*m) Mmid = -0.90 (kN*m)Case: Cross-section in the middle of the column, Slenderness not taken into account M0e = 0.6*M02+0.4*M01 = -0.90 (kN*m)M0emin = 0.4*M02 M0 = max(M0e, M0emin)

=-3.12 (kN*m)

ea = 0 (mm) $Ma = N^* ea = 0.00 (kN^*m)$ MEdmin = 2.15 (kN*m) MOEd = max(MEdmin, MO + Ma) = -2.15 (kN*m)

	Real (provided) area Ratio:	Asr = 201 (mm2) ρ = 0.22 %
.6	Reinforcement:	
	Main bars (): • 8 ∳16 I = 3.46 (m)	
	Transversal reinforcement: (): stirrups: 26 \u00f66	l = 1.06 (m)
Mate	erial survey:	

Date : 26/11/18

- Concrete volume = 0.58 (m3)
- Formwork = 7.68 (m2)
- Steel
 - Total weight = 23.18 (kG)
 - Density = 40.24 (kG/m3)
 - Average diameter = 6.7 (mm)
 - Reinforcement survey:

Diameter	Length (m)	Weight (kG)
6	55.19	12.25
8	27.68	10.93

Date : 26/11/18