REPUBLIC OF RWANDA WERTERN PROVINCE. RUBAVU DISTICT PROJECT: CONSTRUCTION OF COMMERCIAL BUILDING PROJECT OWNER: HABIBU MUSSA Plot No: 1063

REINFORCED CONCRETE STRUCTURAL DESIGN

Design code:

BS 8110-1997. Eurocode 2 – 1992

CAD:

DESIGNER:

PROKON Software.

Eng HAVUGIMANA JUVENS REG: A253/EC/IER/2014

January, 2018

REINFORCED CONCRETE STRUCTURAL DESIGN

DESIGN INFORMATION

 BS 8110-1997:The structural use of Concrete 1992 Eurocode 2 - 1992 	Relevant Building Regulations and Design Code
COMMERCIAL BUILDING (SUPERMARKET)	Intended use of the building
Roof-Imposed1.5 kN/m²-Finishes1.5 kN/m²Floor-Imposed (3)and partitions(1)5 kN/m²Stairs-Imposed4 kN/m²- Finishes1.5 kN/m²	General loading conditions
Severe(external)and Mild (internal)	Exposure conditions
Variable according to the site conditions: Foundation proposed at 80cm deep Average allowable bearing pressure = 500kN/ m ²	Subsoil conditions
Reinforced Concrete footing to columns.	Foundation type
Concrete: grade C 25 (with 20mm max. aggregates. Mix ratio 400 kg/ m ³ [!] Reinforcement :-Characteristic strength: <i>f</i> _y = 450 N/mm for stirrups <i>f</i> _y = 250 N/mm ²	Material data
Self weight of Reinforced concrete = 25kN/m ³ Self weight of masonry = 18kN/m ³	Other relevant informations
For dead load: 1.4For live load: 1.6	Partial safety factor

REINFORCED CONCRETE STRUCTURAL DESIGN

Commercial building

TYPICAL STRUCTURAL LAYOUT:

Storey height (MAX) =3.20m Beam size=50x25cm Column section: 40x30cm

SLAB DESIGN

Typical slab panel design

Durability and fire resistance

Nominal cover for very moderate conditions of Exposure= 25mm Nominal cover for 1.5 hours fire resistance= 20mm Since 25>20, provide nominal cover = 25mm

Typical Slab panel size:

Lx=3.70m Ly=3.80m Ly/Lx=380/370=1.10 <2[two way slab] Thickness determination Lx=370cm d=370/30-----370/40=12.34cm.....9.25cm Take d=13cm.

Dead load

Additional dead load: Floor finish =1.5KN/ m² Suspended ceiling: 0.5kN/m² **Total additional (unfactored) g=2kN/ m² Live load Vn** Vn=3kN/ m² Partiton load=1kN/m² **Total (unfactored) Vn=4kN/m²**

Rectangular slab panel Design to BS 8110-1997

INPUT DATA

Deflection:

Long term deflections: Load case 1 (mm)

NOTE:Long term deflections to ACI318 9.5.2.3

Deflection checking

Ultimate deflection: *Fu*=L/500 *fu*=3800/500=7.6mm Max long-term deflection=0.9mm<7.6mm...Ok (Slab thickness =130mm is suitable)

Transformed Bending Moments:

Reinforcement:

Reinforcement bending schedule

REINFORCEMENT DETAILS

SLAB

- 2 → Φ12 @ 18cm
- 3 → Φ10 @18cm
- → Φ10 @18cm 4

Depth of slab: 13cm

RAMP DESIGN:

The ramp is designed as a slab fixed on the inclined beam

Thickness determination:

d=280/40=7cm take 13cm Load determination: Considering the ramp as a slab inclined at an angle of 6.3°

-Live load for commercial building and related roads V= 5KN/ m^2

Additional dead load: -Ramp finish =2KN/ m² Total additional dead load = 2 KN/m² Equivalent vertical live load=5/cos 6.3° =5.03KN/ m² Equivalent vertical dead load=2/cos 6.3° =2.1KN/ m² Body guard load :(line load) 1kN/m

Ramp sketch.

Design data:

Defflection:

Long term deflections: Load case 1 (mm)

NOTE:Long term deflections to ACI318 9.5.2.3

Deflection checking

Ultimate deflection: *fu*=L/500 *fu*=3800/500=7.6mm Max long-term deflection =0.4 mm < 7.6mm...Ok (Ramp thickness =130mm is OK)

Bending moment:

Reinforcement:

Use the following reinforcement for:

Top1: Ø12@180 mm c/c **Top2:** Ø12@180 mm c/c

Bottom 1: Ø10@180 mm c/c **Bottom:** Ø10@180 mm c/c

Bending schedule for Ramp's slab:

15 1/3Lx	250	1/3Lx15
ø12@180mm c/c		ø12@180mm c/c
	ø10@180mm c/	c
25 / /	270	25
	Ramp reinforcement	

STAIRCASE DESIGN:

Main stair

The main staircase have landing supported by two inclined beams; these beam has the same reinforcement as other normal beams:

Flight design:

	gk	qk	
Flight a reaction	<u>31.48</u>	12.1	<u>5</u> kN/m
Flight b reaction	<u>18.51</u>	<u>9.85</u>	kN/m

n1 = (1.4 x 31.48 + 1.6 x 12.15)/1.20 = 52.92 kN/m n2 = (1.4 x 18.51 + 1.6 x 9.85)/1.20 = 34.73 kN/m²

DESIGN

Zero shear is at (128.48 - 2.50) /(14.28 + 52.92) + 0.175 = 2.050 m from left M = 128.48 x 2.050 - 14.28 x 2.050²/2 - 52.92 x 1.875²/2 = 140.34 kNm/m

As: useY10 @ 275 T in span

Fire Escape:

Flight design:

Landing:

DESIGN

Zero shear is at (1,322.09 - 2.50) / (14.28 + 28.80) + 0.175 = 0.000 m from right M = 1,322.09 x 0.000 - 14.28 x 0.000²/2 - 28.80 x -0.175²/2 = 0.00 kNm/m d = K = As

Y10 @ 275 T in span

L/d =

DESIGN OF BEAMS, COLUMNS AND FOOTINGS WITH METHOD OF PORTAL FRAME

I. 4 FLOOR BUILDING

LOAD DETERMINATION LOAD FROM SLAB Dead load Additional dead load: Floor finish =1.5KN/m² Suspended ceiling: 0.5kN/m² Total additional (unfactored) g=2kN/m² Live load Vn Vn=4kN/m² Total (unfactored) Vn=4kN/m² Σ =13, 750 KN/m²

PORTAL FRAME LOAD

Linear load on beams

Load from slab: 3.8x13.75=52.25KN/ml Wall = 18x0.2x3.2x1.4= 16.13 KN/ml Wall finishes= 20x0.02x3.2x1.4x2= 3.6 KN/ml Bottom flange (Nervure): 0, 37x0, 25x25 x1.4=3,3kN/ml

Total = 75.3kN/ml Column own weight: 1.4x0.3x0.4x3.2x25=13.44KN

Vertical load distribution

100 %
100 %
90%
80%

Live load =3.2x1.6x3.8 = 19.46 KN/ml Dead load = 75.3- 19.5 = 55.8 KN/ml

4) 75.3 +19.5= 94.8 KN/ml
3) 75.3 +19.5= 94.8KN/ml
2) 75.3 +19.5x0.9= 92.9 KN/ml
1) 75.3 +19.5X0.8= 90.9 KN/ml

FRAME ANALYSIS

Longitudinal Frame of 12 spans

Total length of Frame = 36.55ml EARTHQUAKE (charge normative)

Storey 4: (95.3/1.6) x36.55=2177.2KN Axial force: (13.44/1.4) x3.8=36.5KN Total: 2213.5 KN 1%=22.2KN Storey 3: 22.2 KN Storey 2: 92.9/1.6x36.55+36.5=2159KN →22.0 KN Storey 1: 90.9/1.6x36.55+36.5=2113.3KN →21.2KN

Transversal Frame of 5 spans

Total length of Frame = 17.80ml EARTHQUAKE (charge normative)

Storey 1: (75.3/1.6) x17.8=937.8KN Axial force: (13.44/1.4) x3.2=30.8KN Total: 968.6 KN 1%=9.7KN Storey 2: 9.7 KN Storey 3: 92.9/1.6x17.8+36.5=1070KN →10.7 KN

Storey 4: 90.9/1.6x17.8+36.5=1048KN →10.5KN

Considered forces:

- 1. Axial forces
- 2. Earthquake
- 3. Soil pressur

1.1 LONGITUDINAL FRAME WITH 11 SPANS

Nodes :

- 17 -

Axial forces :

9	19.46	50	24.72	51	26.38	52	26.46	53	21.24	54	21.47	55	32.01	56	29.01	57	22.39	58	27.41	59	27.46	60
00.1		200.9		216.1		221.7		203.1		180.9		209.7		229		185.5		171.3		184.7		97.8
7	-3.705	38	-2.396	39	-1.012	40	.3177	41	2.57	42	3.58	43	2.045	44	3.189	45	4.77	46	3.779	47	3.377	48
08.7		394.4		432.1		442		405.5		366.1		417.4		454.7		372.5		345.2		361.1		201.
5	6297	26	-2.147	27	-1.979	28	-1.502	29	7184	30	4023	31	0847	32	.6202	33	1.829	34	2.72	35	4.815	36
15.1		591.2		647.5		662.8		608.8		549.1		625.7		681.9		559.2		516.6		542.5		302
3	-5.774	14	-6.913	15	-6.812	16	-6.153	17	-3.542	18	-3.018	19	-6.425	20	-4.705	21	-1.648	22	-3.091	23	-2.713	24
17.2		793		862.3		884.4		813		728.4		835		911.6		745.3		684.7		731.2		396.
		2		_3		4		5		6		7		8		a		10		11		12.

Shear force and bending moment:

ENVELOPE RESULTS FOR CRITICAL LONGITUDINAL BEAM:

Beam nodes 12-13-----24

Max Negative Moment: 69.6KNm

Maximum Positive Moment: 40.5KNm

Shear force: 111 KN

Reinforcements:

Top reinforcement (At supports)

				I	Desigr	Results					
	Moment		Sł	near		Tors	sion (w eb)		Tors	ion (flange)	
Muc	314.7	kNm	v	2.50	MPa	v	0.00	MPa	v	0.00	MPa
As	2034	mm²	vc	0.64	MPa	vt	0.34	MPa	vt	0.34	MPa
As'	256	mm²	Asv/Sv	1.1896		Asv/Sv	0.0000		Asv/Sv	0.0000	
Anom	195	mm²	Asv/Sv nom	0.2554		As	0	mm²	As	0	mm²

Asc= 2034 mm²

Use 3Ф25+ 2Ф20 with Asc=2097mm²

Bottom reinforcement (Mid span)

				D	esign	Results					
	Moment		Sh	iear		Tors	sion (web)		Tors	ion (flange)	
Muc	314.7	kNm	v	2.50	MPa	v	0.00	MPa	v	0.00	MPa
As	1130	mm²	vc	0.52	MPa	vt	0.34	MPa	vt	0.34	MPa
As'	0	mm²	Asv/Sv	1.2617		Asv/Sv	0.0000		Asv/Sv	0.0000	
Anom	195	mm²	Asv/Sv nom	0.2554		As	0	mm²	As	0	mm²

Asc= 1130 mm²

Use 4 Φ 20 with Asc=1256mm²

Stirrups: 1,26mm²/mm = 12,6cm²/m, we use Ø8@ 15cm c/c near support and Ø8@ 20cm c/c mid span

1.1 TRANSVERSAL FRAME WITH 5 SPANS

Axial forces :

25	25.78	26	30.14	27	32.67	28	35.48	29	25.37	30
113.4		224.7		225		229.1		194.9		86.8
19	-5.285	20	-3.028	21	-1.451	22	5072	23	2.918	24
235.8		441.3		450.9		456.1		382.5		181
13	.2539	14	9611	15	3147	16	.6183	17	3.624	18
356.6		661.1		675.9		683.3		576		268
7	-7.346	8	-7.675	9	-7.398	10	-7.257	11	-2.584	12
473.7		885.6		899.8		911		777.2		348
z		2		3		4		5		6

Shear force and bending moment:

Reinforced Concrete structural Design commercial building

ENVELOPE RESULTS FOR CRITICAL TRANSVERSAL BEAM:

Max Negative Moment : 67.0KNm

Maximum Positive Moment: 75.05KNm

Shear force: 899.78KN

Reinforcements:

Top reinforcement (At supports)

					Desigr	Results					
Moment Shear Torsion (Torsi	on (flange)	
Muc	377.7	kNm	v	2.53	MPa	v	0.00	MPa	v	0.00	MPa
As	2185	mm²	vc	0.69	MPa	vt	0.37	MPa	vt	0.37	MPa
As'	2	mm²	Asv/Sv	1.1761		Asv/Sv	0.0000		Asv/Sv	0.0000	
Anom	195	mm²	Asv/Sv nom	0.2554		As	0	mm²	As	0	mm²

Asc= 2185 mm²

Use $5\Phi 25$ with Asc=2453mm²

Bottom reinforcement (Mid span)

	Design Results												
	Moment		Sh	ear		Torsion (w eb)			Torsion (flange)				
Muc	377.7	kNm	v	2.53	MPa	v	0.00	MPa	v	0.00	MPa		
As	1096	mm²	vc	0.55	MPa	vt	0.37	MPa	vt	0.37	MPa		
As'	0	mm²	Asv/Sv	1.2669		Asv/Sv	0.0000		Asv/Sv	0.0000			
Anom	195	mm²	Asv/Sv nom	0.2554		As	0	mm²	As	0	mm²		

Asc= 1096 mm²

Use 4 Φ 20 with Asc=1256mm²

Stirrups: 1,27mm²/mm = 12.7cm²/m, we use Ø8@16cm c/c near support and Ø8@20cm c/c mid span

ENVELOPE RESULTS FOR THE CRITICAL COLUMN:

Note: The columns and footings will be designed for the longitudinal and transversal frame's results whichever is greater.

DESIGN OF INTERIOR COLUMN

Interior column (Column 4 – 10--28): (Longitudinal frame has the maximum values)

Storey	Node	Axial force	Moment	t (KNm)	Shear force
		(KN)			(KN)
			Bottom	Тор	
0	4-10	911.9	70.1	71.6	18.1
1	10-16	681.9	70.8	28.4	16.8
2	16-22	454.5	27.8	28.6	8.2
3	22-28	229	13.6	20.8	8.67

Column:

Summary of design calculations: Design results for all load cases:

Load case	Axis	N (kN)	M1 (kNm)	M2 (kNm)	Mi (kNm)	Madd (kNm)	Design	M (kNm)	M' (kNm)	Asc (mm ²)
1	X-X Y-Y	911.6	70.1 0.0	71.6 0.0	28.6 0.0	5.9 0.0	X-X Bottom	74.6 0.0	74.6	2208 (3.5%) 250 (0.4%)

Asc=3.5% = 2208 mm²

Use $4\Phi 25 + 4\Phi 20$ with Asc = **2592mm**²

Note : For the same members (internal columns) , the GROUND FLOOR $\,$ will be evenly reinforced with $\,4\Phi25{+}4\Phi20$

Upper storey column reinforcement (1st floor):

Summary of design calculations:

Design results for all load cases:

Load case	Axis	N (kN)	M1 (kNm)	M2 (kNm)	Mi (kNm)	Madd (kNm)	Design	M (kNm)	M' (kNm)	Asc (mm ²)
1	X-X Y-Y	683.3	68.4 0.0	70.8 0.0	28.3 0.0	5.3 0.0	X-X Bottom	71.1 0.0	71.1	1642 (2.6%) 250 (0.4%)

 $Asc=2.6\% = 1642mm^2$

Use $4\Phi 20+4\Phi 16$ with Asc = 1659mm²

Note : For the same members (internal columns) , the first FLOOR be evenly reinforced with $4\Phi 20\text{+}4\Phi 16$

Upper storey column reinforcement (2nd floor):

Summary of design calculations:

Design results for all load cases:

Load case	Axis	N (kN)	M1 (kNm)	M2 (kNm)	Mi (kNm)	Madd (kNm)	Design	M (kNm)	M' (kNm)	Asc (mm ²)
1	X-X Y-Y	454.5	27.8 0.0	28.6 0.0	11.4 0.0	4.3 0.0	X-X Bottom	29.9 0.0	29.9	250 (0.4%) 250 (0.4%)

Asc=0.4% = 250mm² but in practice the minimum allowable Asc is 0.8% Take Asc = 0.8%x120000 = 960mm²

Note : For the same members (internal columns) , the second FLOOR and third (last) floor will be evenly reinforced with $8\Phi14$

DESIGN OF EDGE COLUMNS

Storey	Node	Axial force	Moment (KNm)		Shear force
		(KN)		(KN)	
			Bottom	Тор	
0	0-7	473.7	20.75	58.2	103.6
1	7-13	356.6	20.49	165.84	107.4
2	13-19	235.8	25.78	69.45	109
3	19-25	113.4	25.78	46.01	9.96

Edge column (Column 0 – 7--25): (Transversal frame has the maximum values)

Column:

Summary of design calculations:

Design results for all load cases:

Load case	Axis	N (kN)	M1 (kNm)	M2 (kNm)	Mi (kNm)	Madd (kNm)	Design	M (kNm)	M' (kNm)	Asc (mm²)
1	X-X Y-Y	473.7	20.8 0.0	58.2 0.0	58.2 0.0	0.0 0.0	X-X Bottom	58.2 0.0	58.2	480 (0.4%) 480 (0.4%)

Asc=0.4% = 480mm² but in practice the minimum allowable Asc is 0.8% Take Asc = 0.8%x120000 = 960mm²

Use $8\Phi14$ with Asc = 1231mm²

Note :

Since we have the minimum allowable reinforcement (0.8%), all the floor's edge columns (Ground, 1^{st} , 2^{nd} and 3rd) will be evenly reinforced with 8 Φ 14.

PLINTH BEAM (LONGRINE)

FOOTINGS DESIGN

INTERIOR FOOTING:

Soil bearing capacity: We consider both 4 Points for respectively different 70cm, 60cm, 50cm and 80cm deep.

Design data:

Design results:

Reinforcement bending schedule:

SECTION

EDGE FOOTING:

Design data:

Base length A (m)	2.1	Title Ec	ge Footing	design	HABIE	IU Mussa						
Base width B (m)	2.1		Unfactored Loads								Optimize	
Column(s) Col 1	Col 2	Load	Col	LF	LF	P	Hx	Hy	Mx	My		Costs
C (m) 0.40	0.00	Case	no.	ovt	ULS	(kN)	(kN)	(kN)	(kNm)	(kNm)	Ξ	
D (m) 0.30	0.00	1	1			1048						Daint Ann 0.00
E (m) 0.00	0.00											Heini. /ton 0.00
F (m) 0.00	0.00											Optimize A,B & Y
Stub column height X (m)	1.40											
Base depth Y (m)	0.45											
Soil cover Z (m)	0.90										Ŧ	Abort
Concrete density (kN/m ³)	25.0	<u> </u>										
Soil density (kN/m ³)	24									Euro	CO	de 2 - 1992
Soil friction angle (*)	18											T ·
Base friction constant	1.0	L								*		
Rebar depth top X (mm)	30	L										
Rebar depth top Y (mm)	30	L										d1
Rebar depth bottom X [mm]	30	L										
Rebar depth bottom Y [mm]	30	L										
Ovt. load factor: Self weight	1.4											i i i i i i i i i i i i i i i i i i i
ULS load factor: Self weight	1.6											
Max. SLS bearing pr. [kN/m/]	500	L								+		
S.F. Uverturning (ULS)	1.0	L									_	<u> </u>
S.F. Slip (ULS)	1.0	L										Mx N
Ito base (MPa)	25.0	L										P
tc' columns (MPa)	25.0	L									н	lx .
[IV (MPa)	460											[⊷] • □
												X
												N
												┍━━━╋┺━━┓
												Y

Design results:

Reinforcement Bending schedule:

SECTION

II. RECAPTILATION OF THE DESIGN RESULTS

Note: Unless the beams, all the results are related to the transversal frame since it has the maximum values.

5.1.1 COLUMNS SUMMARY

Floor	Internal/Edge	Column dimensions	Column reinforcement	Stirrups
0	Internal	40X30	4Φ25+4Φ20	Φ8@18cm c/c
	Edge	40X30	8Φ14	Ф8@18cm c/c
1	Internal	40X30	4Φ20+4Φ16	Φ8@18cm c/c
	Edge	40X30	8Φ14	Φ8@18cm c/c
2	Internal	40X30	8Φ14	Ф8@18cm c/c
	Edge	40X30	8Φ14	Φ8@18cm c/c
3	Internal	40X30	8Φ14	Φ8@18cm c/c
	Edge	40X30	8Φ14	Φ8@18cm c/c

5.1.2 FOOTINGS SUMMARY

Footing type	Dimensions	Reinforcement in X-	Reinforcement in Y-	Starter column
		direction	direction	reinforcement
Type 1 (Internal)	250x250x55	Φ14@14 cm c/c	Φ14@14 cm c/c	4Φ25+4Φ20
Type 2 (Edge)	210x210x45	Φ14@20 cm c/c	Φ14@20 cm c/c	8Ф14

5.1.3 BEAMS SUMMARY

Beam type	Dimensions	Top reinforcement (at	Bottom reinforcement	Stirrups near	
		support)	(mid-span)	support/Mid span	
Longitudinal	50x25	3Ф25 + 2Ф20	4Ф20	Ф8@15cm c/c	
beams				Ф8@20cm c/c	
Transversal	50x25	5Φ25	4Ф20	Ф8@15cm c/c	
beams				Ф8@20cm c/c	

5.1.4 SLAB SUMMARY

Element Dimensions		Top	Top	Bottom	Bottom
		x-direction	y-direction	x-direction	y-direction
Suspended slab	13cm thick	Ф12@18cm c/c	Ф12@18cm c/c	Ф10@18cm c/c	Ф10@18cm c/c

5.1.5 RAMP SUMMARY

Element Dimensions		Top	Top	Bottom	Bottom
		x-direction	y-direction	x-direction	y-direction
Suspended slab	13cm thick	Ф12@18cm c/c	Ф12@18cm c/c	Ф10@18cm c/c	Ф10@18cm c/c

Done at Rubavu, January 2018 HAVUGIMANA Juvens BSc.CivilEng